Deepalika Mehra, Vijay Kumar, A. Choudhary, M. Awasthi
{"title":"掺加添加剂的生物柴油加氢燃烧CI发动机的性能和排放特性","authors":"Deepalika Mehra, Vijay Kumar, A. Choudhary, M. Awasthi","doi":"10.1063/5.0143669","DOIUrl":null,"url":null,"abstract":"It is an irresistible argument that there is a requirement for sustainable resources for energy production as there is an enormous rise in demand for energy. Various sectors involve a wide range of energy consumption shares. Conventional fuels are exhaustible and can be replaced with sustainable substitutes, i.e., biofuels including bio-ethanol, biogas, and biodiesel. Recently, biodiesel has gained popularity due to the availability and affordability of feedstock. To extract biodiesel from vegetable oils, the transesterification process is widely used. Biodiesel blends can be used as a direct substitute in diesel engines, which may result in a slight reduction in hydrocarbons, carbon monoxide, and an increase in oxides of nitrogen. The performance parameters may increase or decrease depending on the blend type and calorific value. The objective of this review is to analyze the performance and emission characteristics of second and third-generation biodiesel blends enriched with hydrogen and to explore techniques for improvement such as the addition of additives. Research has shown that the addition of hydrogen improves combustion, resulting in increased brake thermal efficiency and reduced brake specific fuel consumption. Similarly, the inclusion of additives can reduce the production of oxides of nitrogen during combustion. In conclusion, biodiesel blends enriched with hydrogen and additives can offer improved performance, combustion, and emission characteristics. To meet energy demand sustainably and reduce reliance on conventional fuels, further research is necessary to ensure the long-term viability of biodiesel as a sustainable energy source.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Performance and emission characteristics of CI engine using hydrogen enrichment in biodiesel blend with additives—A review\",\"authors\":\"Deepalika Mehra, Vijay Kumar, A. Choudhary, M. Awasthi\",\"doi\":\"10.1063/5.0143669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is an irresistible argument that there is a requirement for sustainable resources for energy production as there is an enormous rise in demand for energy. Various sectors involve a wide range of energy consumption shares. Conventional fuels are exhaustible and can be replaced with sustainable substitutes, i.e., biofuels including bio-ethanol, biogas, and biodiesel. Recently, biodiesel has gained popularity due to the availability and affordability of feedstock. To extract biodiesel from vegetable oils, the transesterification process is widely used. Biodiesel blends can be used as a direct substitute in diesel engines, which may result in a slight reduction in hydrocarbons, carbon monoxide, and an increase in oxides of nitrogen. The performance parameters may increase or decrease depending on the blend type and calorific value. The objective of this review is to analyze the performance and emission characteristics of second and third-generation biodiesel blends enriched with hydrogen and to explore techniques for improvement such as the addition of additives. Research has shown that the addition of hydrogen improves combustion, resulting in increased brake thermal efficiency and reduced brake specific fuel consumption. Similarly, the inclusion of additives can reduce the production of oxides of nitrogen during combustion. In conclusion, biodiesel blends enriched with hydrogen and additives can offer improved performance, combustion, and emission characteristics. To meet energy demand sustainably and reduce reliance on conventional fuels, further research is necessary to ensure the long-term viability of biodiesel as a sustainable energy source.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0143669\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0143669","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Performance and emission characteristics of CI engine using hydrogen enrichment in biodiesel blend with additives—A review
It is an irresistible argument that there is a requirement for sustainable resources for energy production as there is an enormous rise in demand for energy. Various sectors involve a wide range of energy consumption shares. Conventional fuels are exhaustible and can be replaced with sustainable substitutes, i.e., biofuels including bio-ethanol, biogas, and biodiesel. Recently, biodiesel has gained popularity due to the availability and affordability of feedstock. To extract biodiesel from vegetable oils, the transesterification process is widely used. Biodiesel blends can be used as a direct substitute in diesel engines, which may result in a slight reduction in hydrocarbons, carbon monoxide, and an increase in oxides of nitrogen. The performance parameters may increase or decrease depending on the blend type and calorific value. The objective of this review is to analyze the performance and emission characteristics of second and third-generation biodiesel blends enriched with hydrogen and to explore techniques for improvement such as the addition of additives. Research has shown that the addition of hydrogen improves combustion, resulting in increased brake thermal efficiency and reduced brake specific fuel consumption. Similarly, the inclusion of additives can reduce the production of oxides of nitrogen during combustion. In conclusion, biodiesel blends enriched with hydrogen and additives can offer improved performance, combustion, and emission characteristics. To meet energy demand sustainably and reduce reliance on conventional fuels, further research is necessary to ensure the long-term viability of biodiesel as a sustainable energy source.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy