关于非紧化梯度孤子

Pub Date : 2023-05-24 DOI:10.1007/s10455-023-09904-1
Antonio W. Cunha, Erin Griffin
{"title":"关于非紧化梯度孤子","authors":"Antonio W. Cunha,&nbsp;Erin Griffin","doi":"10.1007/s10455-023-09904-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we extend existing results for generalized solitons, called <i>q</i>-solitons, to the complete case by considering non-compact solitons. By placing regularity conditions on the vector field <i>X</i> and curvature conditions on <i>M</i>, we are able to use the chosen properties of the tensor <i>q</i> to see that such non-compact <i>q</i>-solitons are stationary and <i>q</i>-flat. We conclude by applying our results to the examples of ambient obstruction solitons, Cotton solitons, and Bach solitons to demonstrate the utility of these general theorems for various flows.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On non-compact gradient solitons\",\"authors\":\"Antonio W. Cunha,&nbsp;Erin Griffin\",\"doi\":\"10.1007/s10455-023-09904-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we extend existing results for generalized solitons, called <i>q</i>-solitons, to the complete case by considering non-compact solitons. By placing regularity conditions on the vector field <i>X</i> and curvature conditions on <i>M</i>, we are able to use the chosen properties of the tensor <i>q</i> to see that such non-compact <i>q</i>-solitons are stationary and <i>q</i>-flat. We conclude by applying our results to the examples of ambient obstruction solitons, Cotton solitons, and Bach solitons to demonstrate the utility of these general theorems for various flows.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09904-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09904-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们通过考虑非紧孤子,将广义孤子(称为q孤子)的现有结果推广到完全情况。通过在向量场X上设置正则性条件,在M上设置曲率条件,我们能够使用张量q的所选性质来看到这种非紧q孤子是静止的且q平坦的。最后,我们将我们的结果应用于环境阻塞孤子、Cotton孤子和Bach孤子的例子,以证明这些一般定理对各种流动的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On non-compact gradient solitons

In this paper, we extend existing results for generalized solitons, called q-solitons, to the complete case by considering non-compact solitons. By placing regularity conditions on the vector field X and curvature conditions on M, we are able to use the chosen properties of the tensor q to see that such non-compact q-solitons are stationary and q-flat. We conclude by applying our results to the examples of ambient obstruction solitons, Cotton solitons, and Bach solitons to demonstrate the utility of these general theorems for various flows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信