{"title":"具有奇异势的临界kirchhoff型方程","authors":"Yujian Su, Senli Liu","doi":"10.12775/tmna.2022.051","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with the following Kirchhoff-type equation:\n\\begin{equation*}\n-\\bigg(1\n+\\int_{\\mathbb{R}^{3}}|\\nabla u|^{2}dx\\bigg)\n\\Delta u\n+\\frac{A}{|x|^{\\alpha}}u\n=f(u),\\quad x\\in\\mathbb{R}^{3},\n\\end{equation*}\nwhere $A> 0$ is a real parameter and $\\alpha\\in(0,1)\\cup ({4}/{3},2)$.\nRemark that $f(u)=|u|^{2_{\\alpha}^{*}-2}u +\\lambda|u|^{q-2}u\n+|u|^{4}u$,\nwhere $\\lambda> 0$, $q\\in(2_{\\alpha}^{*},6)$,\n$2_{\\alpha}^{*}=2+{4\\alpha}/({4-\\alpha})$\nis the embedding bottom index, and $6$ is the embedding top index and Sobolev critical exponent.\nWe point out that the nonlinearity $f$ is the almost ``optimal'' choice.\nFirst, for $\\alpha\\in({4}/{3},2)$, applying the generalized version of Lions-type\n theorem and the Nehari manifold, we show the existence of nonnegative\nNehari-type ground sate solution for above equation. Second, for $\\alpha\\in(0,1)$,\n using the generalized version of Lions-type theorem and the Poho\\v{z}aev\n manifold, we establish the existence of nonnegative Poho\\v{z}aev-type ground\nstate solution for above equation. Based on our new generalized version\nof Lions-type theorem, our works extend the results in Li-Su [Z. Angew. Math. Phys. {\\bf 66} (2015)].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical Kirchhoff-type equation with singular potential\",\"authors\":\"Yujian Su, Senli Liu\",\"doi\":\"10.12775/tmna.2022.051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we deal with the following Kirchhoff-type equation:\\n\\\\begin{equation*}\\n-\\\\bigg(1\\n+\\\\int_{\\\\mathbb{R}^{3}}|\\\\nabla u|^{2}dx\\\\bigg)\\n\\\\Delta u\\n+\\\\frac{A}{|x|^{\\\\alpha}}u\\n=f(u),\\\\quad x\\\\in\\\\mathbb{R}^{3},\\n\\\\end{equation*}\\nwhere $A> 0$ is a real parameter and $\\\\alpha\\\\in(0,1)\\\\cup ({4}/{3},2)$.\\nRemark that $f(u)=|u|^{2_{\\\\alpha}^{*}-2}u +\\\\lambda|u|^{q-2}u\\n+|u|^{4}u$,\\nwhere $\\\\lambda> 0$, $q\\\\in(2_{\\\\alpha}^{*},6)$,\\n$2_{\\\\alpha}^{*}=2+{4\\\\alpha}/({4-\\\\alpha})$\\nis the embedding bottom index, and $6$ is the embedding top index and Sobolev critical exponent.\\nWe point out that the nonlinearity $f$ is the almost ``optimal'' choice.\\nFirst, for $\\\\alpha\\\\in({4}/{3},2)$, applying the generalized version of Lions-type\\n theorem and the Nehari manifold, we show the existence of nonnegative\\nNehari-type ground sate solution for above equation. Second, for $\\\\alpha\\\\in(0,1)$,\\n using the generalized version of Lions-type theorem and the Poho\\\\v{z}aev\\n manifold, we establish the existence of nonnegative Poho\\\\v{z}aev-type ground\\nstate solution for above equation. Based on our new generalized version\\nof Lions-type theorem, our works extend the results in Li-Su [Z. Angew. Math. Phys. {\\\\bf 66} (2015)].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2022.051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Critical Kirchhoff-type equation with singular potential
In this paper, we deal with the following Kirchhoff-type equation:
\begin{equation*}
-\bigg(1
+\int_{\mathbb{R}^{3}}|\nabla u|^{2}dx\bigg)
\Delta u
+\frac{A}{|x|^{\alpha}}u
=f(u),\quad x\in\mathbb{R}^{3},
\end{equation*}
where $A> 0$ is a real parameter and $\alpha\in(0,1)\cup ({4}/{3},2)$.
Remark that $f(u)=|u|^{2_{\alpha}^{*}-2}u +\lambda|u|^{q-2}u
+|u|^{4}u$,
where $\lambda> 0$, $q\in(2_{\alpha}^{*},6)$,
$2_{\alpha}^{*}=2+{4\alpha}/({4-\alpha})$
is the embedding bottom index, and $6$ is the embedding top index and Sobolev critical exponent.
We point out that the nonlinearity $f$ is the almost ``optimal'' choice.
First, for $\alpha\in({4}/{3},2)$, applying the generalized version of Lions-type
theorem and the Nehari manifold, we show the existence of nonnegative
Nehari-type ground sate solution for above equation. Second, for $\alpha\in(0,1)$,
using the generalized version of Lions-type theorem and the Poho\v{z}aev
manifold, we establish the existence of nonnegative Poho\v{z}aev-type ground
state solution for above equation. Based on our new generalized version
of Lions-type theorem, our works extend the results in Li-Su [Z. Angew. Math. Phys. {\bf 66} (2015)].