{"title":"带势聚焦非线性Klein-Gordon方程的破缺对称性","authors":"V. Georgiev, S. Lucente","doi":"10.1142/S0219891618500248","DOIUrl":null,"url":null,"abstract":"We study the dynamics for the focusing nonlinear Klein–Gordon equation, [Formula: see text] with positive radial potential [Formula: see text] and initial data in the energy space. Under suitable assumption on the potential, we establish the existence and uniqueness of the ground state solution. This enables us to define a threshold size for the initial data that separates global existence and blow-up. An appropriate Gagliardo–Nirenberg inequality gives a critical exponent depending on [Formula: see text]. For subcritical exponent and subcritical energy global existence vs blow-up conditions are determined by a comparison between the nonlinear term of the energy solution and the nonlinear term of the ground state energy. For subcritical exponents and critical energy some solutions blow-up, other solutions exist for all time due to the decomposition of the energy space of the initial data into two complementary domains.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S0219891618500248","citationCount":"1","resultStr":"{\"title\":\"Breaking symmetry in focusing nonlinear Klein-Gordon equations with potential\",\"authors\":\"V. Georgiev, S. Lucente\",\"doi\":\"10.1142/S0219891618500248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the dynamics for the focusing nonlinear Klein–Gordon equation, [Formula: see text] with positive radial potential [Formula: see text] and initial data in the energy space. Under suitable assumption on the potential, we establish the existence and uniqueness of the ground state solution. This enables us to define a threshold size for the initial data that separates global existence and blow-up. An appropriate Gagliardo–Nirenberg inequality gives a critical exponent depending on [Formula: see text]. For subcritical exponent and subcritical energy global existence vs blow-up conditions are determined by a comparison between the nonlinear term of the energy solution and the nonlinear term of the ground state energy. For subcritical exponents and critical energy some solutions blow-up, other solutions exist for all time due to the decomposition of the energy space of the initial data into two complementary domains.\",\"PeriodicalId\":50182,\"journal\":{\"name\":\"Journal of Hyperbolic Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S0219891618500248\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hyperbolic Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219891618500248\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hyperbolic Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S0219891618500248","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Breaking symmetry in focusing nonlinear Klein-Gordon equations with potential
We study the dynamics for the focusing nonlinear Klein–Gordon equation, [Formula: see text] with positive radial potential [Formula: see text] and initial data in the energy space. Under suitable assumption on the potential, we establish the existence and uniqueness of the ground state solution. This enables us to define a threshold size for the initial data that separates global existence and blow-up. An appropriate Gagliardo–Nirenberg inequality gives a critical exponent depending on [Formula: see text]. For subcritical exponent and subcritical energy global existence vs blow-up conditions are determined by a comparison between the nonlinear term of the energy solution and the nonlinear term of the ground state energy. For subcritical exponents and critical energy some solutions blow-up, other solutions exist for all time due to the decomposition of the energy space of the initial data into two complementary domains.
期刊介绍:
This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in:
Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions.
Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc.
Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations.
Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc.
General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations.
Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.