{"title":"对称双线性形式Witt环的幂除法","authors":"B. Totaro","doi":"10.2140/akt.2023.8.275","DOIUrl":null,"url":null,"abstract":"The Witt ring of symmetric bilinear forms over a field has divided power operations. On the other hand, it follows from Garibaldi-Merkurjev-Serre's work on cohomological invariants that all operations on the Witt ring are essentially linear combinations of exterior powers. We find the explicit formula for the divided powers as a linear combination of exterior powers. The coefficients involve the ``tangent numbers'', related to Bernoulli numbers. The divided powers on the Witt ring give another construction of the divided powers on Milnor K-theory modulo 2.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Divided powers in the Witt ring of symmetric bilinear forms\",\"authors\":\"B. Totaro\",\"doi\":\"10.2140/akt.2023.8.275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Witt ring of symmetric bilinear forms over a field has divided power operations. On the other hand, it follows from Garibaldi-Merkurjev-Serre's work on cohomological invariants that all operations on the Witt ring are essentially linear combinations of exterior powers. We find the explicit formula for the divided powers as a linear combination of exterior powers. The coefficients involve the ``tangent numbers'', related to Bernoulli numbers. The divided powers on the Witt ring give another construction of the divided powers on Milnor K-theory modulo 2.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2023.8.275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2023.8.275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Divided powers in the Witt ring of symmetric bilinear forms
The Witt ring of symmetric bilinear forms over a field has divided power operations. On the other hand, it follows from Garibaldi-Merkurjev-Serre's work on cohomological invariants that all operations on the Witt ring are essentially linear combinations of exterior powers. We find the explicit formula for the divided powers as a linear combination of exterior powers. The coefficients involve the ``tangent numbers'', related to Bernoulli numbers. The divided powers on the Witt ring give another construction of the divided powers on Milnor K-theory modulo 2.