对称双线性形式Witt环的幂除法

IF 0.5 Q3 MATHEMATICS
B. Totaro
{"title":"对称双线性形式Witt环的幂除法","authors":"B. Totaro","doi":"10.2140/akt.2023.8.275","DOIUrl":null,"url":null,"abstract":"The Witt ring of symmetric bilinear forms over a field has divided power operations. On the other hand, it follows from Garibaldi-Merkurjev-Serre's work on cohomological invariants that all operations on the Witt ring are essentially linear combinations of exterior powers. We find the explicit formula for the divided powers as a linear combination of exterior powers. The coefficients involve the ``tangent numbers'', related to Bernoulli numbers. The divided powers on the Witt ring give another construction of the divided powers on Milnor K-theory modulo 2.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Divided powers in the Witt ring of symmetric bilinear forms\",\"authors\":\"B. Totaro\",\"doi\":\"10.2140/akt.2023.8.275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Witt ring of symmetric bilinear forms over a field has divided power operations. On the other hand, it follows from Garibaldi-Merkurjev-Serre's work on cohomological invariants that all operations on the Witt ring are essentially linear combinations of exterior powers. We find the explicit formula for the divided powers as a linear combination of exterior powers. The coefficients involve the ``tangent numbers'', related to Bernoulli numbers. The divided powers on the Witt ring give another construction of the divided powers on Milnor K-theory modulo 2.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2023.8.275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2023.8.275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

域上对称双线性形式的Witt环具有除幂运算。另一方面,根据Garibaldi-Merkurjev-Serre关于上同调不变量的研究,Witt环上的所有运算本质上都是外幂的线性组合。我们发现幂的显式公式是外部幂的线性组合。系数涉及到与伯努利数相关的“正切数”。Witt环上的分幂给出了Milnor k理论模2上的分幂的另一种构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Divided powers in the Witt ring of symmetric bilinear forms
The Witt ring of symmetric bilinear forms over a field has divided power operations. On the other hand, it follows from Garibaldi-Merkurjev-Serre's work on cohomological invariants that all operations on the Witt ring are essentially linear combinations of exterior powers. We find the explicit formula for the divided powers as a linear combination of exterior powers. The coefficients involve the ``tangent numbers'', related to Bernoulli numbers. The divided powers on the Witt ring give another construction of the divided powers on Milnor K-theory modulo 2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信