关于具有线性源项的分数阶保形扩散方程收敛性的注记

Q1 Mathematics
Tien Nguyen
{"title":"关于具有线性源项的分数阶保形扩散方程收敛性的注记","authors":"Tien Nguyen","doi":"10.53006/rna.1144709","DOIUrl":null,"url":null,"abstract":"In this paper, we study the diffusion equation with conformable derivative. The main goal is to prove the convergence of the mild solution to our problem when the order of fractional Laplacian tends to $1^-$. The principal techniques of our paper is based on some useful evaluations for exponential kernels.","PeriodicalId":36205,"journal":{"name":"Results in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Note on the convergence of fractional conformable diffusion equation with linear source term\",\"authors\":\"Tien Nguyen\",\"doi\":\"10.53006/rna.1144709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the diffusion equation with conformable derivative. The main goal is to prove the convergence of the mild solution to our problem when the order of fractional Laplacian tends to $1^-$. The principal techniques of our paper is based on some useful evaluations for exponential kernels.\",\"PeriodicalId\":36205,\"journal\":{\"name\":\"Results in Nonlinear Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Nonlinear Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53006/rna.1144709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53006/rna.1144709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有保形导数的扩散方程。主要目标是证明当分数拉普拉斯算子的阶数趋向于$1^-$时,我们问题的温和解的收敛性。本文的主要技术是基于对指数核的一些有用的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Note on the convergence of fractional conformable diffusion equation with linear source term
In this paper, we study the diffusion equation with conformable derivative. The main goal is to prove the convergence of the mild solution to our problem when the order of fractional Laplacian tends to $1^-$. The principal techniques of our paper is based on some useful evaluations for exponential kernels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Nonlinear Analysis
Results in Nonlinear Analysis Mathematics-Mathematics (miscellaneous)
CiteScore
1.60
自引率
0.00%
发文量
34
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信