使用非参数平滑器对给定协变量值的成功概率的推断

Q3 Mathematics
R. Wilcox
{"title":"使用非参数平滑器对给定协变量值的成功概率的推断","authors":"R. Wilcox","doi":"10.22237/jmasm/1556670240","DOIUrl":null,"url":null,"abstract":"For a binary random variable Y, let p(x) = P(Y = 1 | X = x) for some covariate X. The goal of computing a confidence interval for p(x) is considered. In the logistic regression model, even a slight departure difficult to detect via a goodness-of-fit test can yield inaccurate results. The accuracy of a confidence interval can deteriorate as the sample size increases. The goal is to suggest an alternative approach based on a smoother, which provides a more flexible approximation of p(x).","PeriodicalId":47201,"journal":{"name":"Journal of Modern Applied Statistical Methods","volume":"18 1","pages":"29"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inferences About the Probability of Success, Given the Value of a Covariate, Using a Nonparametric Smoother\",\"authors\":\"R. Wilcox\",\"doi\":\"10.22237/jmasm/1556670240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a binary random variable Y, let p(x) = P(Y = 1 | X = x) for some covariate X. The goal of computing a confidence interval for p(x) is considered. In the logistic regression model, even a slight departure difficult to detect via a goodness-of-fit test can yield inaccurate results. The accuracy of a confidence interval can deteriorate as the sample size increases. The goal is to suggest an alternative approach based on a smoother, which provides a more flexible approximation of p(x).\",\"PeriodicalId\":47201,\"journal\":{\"name\":\"Journal of Modern Applied Statistical Methods\",\"volume\":\"18 1\",\"pages\":\"29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Applied Statistical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22237/jmasm/1556670240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Applied Statistical Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22237/jmasm/1556670240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

对于二元随机变量Y,设p(x)=p(Y=1|x=x)对于某些协变量x。在逻辑回归模型中,即使是难以通过拟合优度检验检测到的微小偏差也可能产生不准确的结果。置信区间的准确性可能随着样本量的增加而恶化。目标是提出一种基于平滑器的替代方法,该方法提供了p(x)的更灵活的近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inferences About the Probability of Success, Given the Value of a Covariate, Using a Nonparametric Smoother
For a binary random variable Y, let p(x) = P(Y = 1 | X = x) for some covariate X. The goal of computing a confidence interval for p(x) is considered. In the logistic regression model, even a slight departure difficult to detect via a goodness-of-fit test can yield inaccurate results. The accuracy of a confidence interval can deteriorate as the sample size increases. The goal is to suggest an alternative approach based on a smoother, which provides a more flexible approximation of p(x).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
5
期刊介绍: The Journal of Modern Applied Statistical Methods is an independent, peer-reviewed, open access journal designed to provide an outlet for the scholarly works of applied nonparametric or parametric statisticians, data analysts, researchers, classical or modern psychometricians, and quantitative or qualitative methodologists/evaluators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信