提升统计结构

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
K. Grabowska, J. Grabowski, M. Ku's, G. Marmo
{"title":"提升统计结构","authors":"K. Grabowska, J. Grabowski, M. Ku's, G. Marmo","doi":"10.1142/S0129055X22500428","DOIUrl":null,"url":null,"abstract":"We consider some natural (functorial) lifts of geometric objects associated with statistical manifolds (metric tensor, dual connections, skewness tensor, etc.) to higher tangent bundles. It turns out that the lifted objects form again a statistical manifold structure, this time on the higher tangent bundles, with the only difference that the metric tensor is pseudo-Riemannian. What is more, natural lifts of potentials (called also divergence or contrast functions) turn out to be again potentials, this time for the lifted statistical structures. We propose an analogous procedure for lifting statistical structures on Lie algebroids and lifting contrast functions which are defined on Lie groupoids. In particular, we study in detail Lie groupoid structures of higher tangent bundles of Lie groupoids. Our geometric constructions of lifts are illustrated by explicit examples, including some important statistical models and potential functions on Lie groupoids. MSC","PeriodicalId":54483,"journal":{"name":"Reviews in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lifting statistical structures\",\"authors\":\"K. Grabowska, J. Grabowski, M. Ku's, G. Marmo\",\"doi\":\"10.1142/S0129055X22500428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider some natural (functorial) lifts of geometric objects associated with statistical manifolds (metric tensor, dual connections, skewness tensor, etc.) to higher tangent bundles. It turns out that the lifted objects form again a statistical manifold structure, this time on the higher tangent bundles, with the only difference that the metric tensor is pseudo-Riemannian. What is more, natural lifts of potentials (called also divergence or contrast functions) turn out to be again potentials, this time for the lifted statistical structures. We propose an analogous procedure for lifting statistical structures on Lie algebroids and lifting contrast functions which are defined on Lie groupoids. In particular, we study in detail Lie groupoid structures of higher tangent bundles of Lie groupoids. Our geometric constructions of lifts are illustrated by explicit examples, including some important statistical models and potential functions on Lie groupoids. MSC\",\"PeriodicalId\":54483,\"journal\":{\"name\":\"Reviews in Mathematical Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129055X22500428\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S0129055X22500428","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑与统计流形(度量张量、对偶连接、偏度张量等)相关的几何对象到更高切丛的一些自然(函数)提升。事实证明,提升的物体再次形成了一个统计流形结构,这一次是在更高切丛上,唯一的区别是度量张量是伪黎曼的。更重要的是,势的自然提升(也称为散度或对比函数)再次成为势,这一次是针对提升的统计结构。我们提出了一个类似的过程来提升李代数体上的统计结构和提升李群体上定义的对比函数。特别地,我们详细地研究了李群胚的高切丛的李群胚结构。通过显式例子说明了我们的提升几何结构,包括一些重要的统计模型和李群胚上的势函数。MSC
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lifting statistical structures
We consider some natural (functorial) lifts of geometric objects associated with statistical manifolds (metric tensor, dual connections, skewness tensor, etc.) to higher tangent bundles. It turns out that the lifted objects form again a statistical manifold structure, this time on the higher tangent bundles, with the only difference that the metric tensor is pseudo-Riemannian. What is more, natural lifts of potentials (called also divergence or contrast functions) turn out to be again potentials, this time for the lifted statistical structures. We propose an analogous procedure for lifting statistical structures on Lie algebroids and lifting contrast functions which are defined on Lie groupoids. In particular, we study in detail Lie groupoid structures of higher tangent bundles of Lie groupoids. Our geometric constructions of lifts are illustrated by explicit examples, including some important statistical models and potential functions on Lie groupoids. MSC
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews in Mathematical Physics
Reviews in Mathematical Physics 物理-物理:数学物理
CiteScore
3.00
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: Reviews in Mathematical Physics fills the need for a review journal in the field, but also accepts original research papers of high quality. The review papers - introductory and survey papers - are of relevance not only to mathematical physicists, but also to mathematicians and theoretical physicists interested in interdisciplinary topics. Original research papers are not subject to page limitations provided they are of importance to this readership. It is desirable that such papers have an expository part understandable to a wider readership than experts. Papers with the character of a scientific letter are usually not suitable for RMP.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信