Rasmita Sahu, H. Pradhan, B. B. Mangaraj, S. Behera
{"title":"基于缺陷接地结构的增强带宽紧凑超宽带介质谐振器天线","authors":"Rasmita Sahu, H. Pradhan, B. B. Mangaraj, S. Behera","doi":"10.1515/freq-2022-0301","DOIUrl":null,"url":null,"abstract":"Abstract This article introduces two new compact ultra-wide band (UWB) rectangular dielectric resonator antennas (RDRAs) with enhanced bandwidth (BW), gain, and directivity. The RDRAs are designed at 10 GHz resonant frequency. The proposed RDRAs are compactly designed using resonating dielectric material (RDM) of Alumina_96 pct (εr = 9.4, tanδ = 0.006) with overall dimensions of 30 × 20 × 4.6 mm3. The RDMs are mounted on FR4 substrate (εr = 4.4, tanδ = 0.02) with defected ground structure (DGS). The DGS are comprised of rectangular and circular ring slots on it. These compact DGS-RDRAs provides enhanced BW. Prototypes of the two suggested RDRAs are fabricated. The fabricated RDRAs are validated by experimental set-ups. The RDRA with rectangular-ring slot DGS provides impedance BW (S11 < −10 dB) of 33.97 % (8.6658–12.071 GHz). The impedance BW of the other RDRA is 27.97 % (9.08–11.869 GHz). The rectangular-ring slotted RDRA offers radiation efficiency and peak realized gain of 86.4 % and 6.27 dBi, respectively within the band of operating frequencies. The radiation efficiency and realised gain of circular-ring slotted RDRA are 86.18 % and 5.9 dBi, respectively. Good agreements are achieved in between the simulated results and measured results. The results are compared with some recently developed antennas available in literature. The comparison shows that the proposed RDRAs can be suitable candidate for various X-band applications such as satellite downlinks, synthetic aperture radar, weather monitoring by military and some government organizations.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defected ground structure based compact UWB dielectric resonator antennas with enhanced bandwidth\",\"authors\":\"Rasmita Sahu, H. Pradhan, B. B. Mangaraj, S. Behera\",\"doi\":\"10.1515/freq-2022-0301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article introduces two new compact ultra-wide band (UWB) rectangular dielectric resonator antennas (RDRAs) with enhanced bandwidth (BW), gain, and directivity. The RDRAs are designed at 10 GHz resonant frequency. The proposed RDRAs are compactly designed using resonating dielectric material (RDM) of Alumina_96 pct (εr = 9.4, tanδ = 0.006) with overall dimensions of 30 × 20 × 4.6 mm3. The RDMs are mounted on FR4 substrate (εr = 4.4, tanδ = 0.02) with defected ground structure (DGS). The DGS are comprised of rectangular and circular ring slots on it. These compact DGS-RDRAs provides enhanced BW. Prototypes of the two suggested RDRAs are fabricated. The fabricated RDRAs are validated by experimental set-ups. The RDRA with rectangular-ring slot DGS provides impedance BW (S11 < −10 dB) of 33.97 % (8.6658–12.071 GHz). The impedance BW of the other RDRA is 27.97 % (9.08–11.869 GHz). The rectangular-ring slotted RDRA offers radiation efficiency and peak realized gain of 86.4 % and 6.27 dBi, respectively within the band of operating frequencies. The radiation efficiency and realised gain of circular-ring slotted RDRA are 86.18 % and 5.9 dBi, respectively. Good agreements are achieved in between the simulated results and measured results. The results are compared with some recently developed antennas available in literature. The comparison shows that the proposed RDRAs can be suitable candidate for various X-band applications such as satellite downlinks, synthetic aperture radar, weather monitoring by military and some government organizations.\",\"PeriodicalId\":55143,\"journal\":{\"name\":\"Frequenz\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frequenz\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/freq-2022-0301\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frequenz","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/freq-2022-0301","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Defected ground structure based compact UWB dielectric resonator antennas with enhanced bandwidth
Abstract This article introduces two new compact ultra-wide band (UWB) rectangular dielectric resonator antennas (RDRAs) with enhanced bandwidth (BW), gain, and directivity. The RDRAs are designed at 10 GHz resonant frequency. The proposed RDRAs are compactly designed using resonating dielectric material (RDM) of Alumina_96 pct (εr = 9.4, tanδ = 0.006) with overall dimensions of 30 × 20 × 4.6 mm3. The RDMs are mounted on FR4 substrate (εr = 4.4, tanδ = 0.02) with defected ground structure (DGS). The DGS are comprised of rectangular and circular ring slots on it. These compact DGS-RDRAs provides enhanced BW. Prototypes of the two suggested RDRAs are fabricated. The fabricated RDRAs are validated by experimental set-ups. The RDRA with rectangular-ring slot DGS provides impedance BW (S11 < −10 dB) of 33.97 % (8.6658–12.071 GHz). The impedance BW of the other RDRA is 27.97 % (9.08–11.869 GHz). The rectangular-ring slotted RDRA offers radiation efficiency and peak realized gain of 86.4 % and 6.27 dBi, respectively within the band of operating frequencies. The radiation efficiency and realised gain of circular-ring slotted RDRA are 86.18 % and 5.9 dBi, respectively. Good agreements are achieved in between the simulated results and measured results. The results are compared with some recently developed antennas available in literature. The comparison shows that the proposed RDRAs can be suitable candidate for various X-band applications such as satellite downlinks, synthetic aperture radar, weather monitoring by military and some government organizations.
期刊介绍:
Frequenz is one of the leading scientific and technological journals covering all aspects of RF-, Microwave-, and THz-Engineering. It is a peer-reviewed, bi-monthly published journal.
Frequenz was first published in 1947 with a circulation of 7000 copies, focusing on telecommunications. Today, the major objective of Frequenz is to highlight current research activities and development efforts in RF-, Microwave-, and THz-Engineering throughout a wide frequency spectrum ranging from radio via microwave up to THz frequencies.
RF-, Microwave-, and THz-Engineering is a very active area of Research & Development as well as of Applications in a wide variety of fields. It has been the key to enabling technologies responsible for phenomenal growth of satellite broadcasting, wireless communications, satellite and terrestrial mobile communications and navigation, high-speed THz communication systems. It will open up new technologies in communications, radar, remote sensing and imaging, in identification and localization as well as in sensors, e.g. for wireless industrial process and environmental monitoring as well as for biomedical sensing.