{"title":"新型近红外荧光生物成像探针BaYF5:Yb3+,Er3+@BaYF5纳米粒子的合成与表征","authors":"Liqing Yang, X. Yang, F. Gao, Q. Fan","doi":"10.1117/1.JNP.16.046009","DOIUrl":null,"url":null,"abstract":"Abstract. Fluorescent bioimaging technology has been widely used in clinic because of its high sensitivity, quick feedback, and no radiation. Among them, NIR-II imaging has lower absorption, tissue scattering, self-fluorescence, and higher signal-to-noise ratio. As a precursor of nanoprobe, BaYF5 is an excellent material due to its low phonon energy, which makes it easy to achieve rare earth ion energy level transition and obtain strong upconversion luminescence. A near-infrared II (NIR-II) rare earth fluoride nanoparticle (NP) BaYF5 : Yb3 + , Er3 + @ BaYF5 has been constructed. The luminescence principle of the material was deeply analyzed, and the influence of different doping ion ratio on fluorescence intensity was explored. Finally, the optimal doping ratio for this matrix material was obtained. In addition, according to the surface properties of the materials, the water solubility and biocompatibility of the NPs were significantly improved by the modification. Our work also systematically tested and analyzed the cytotoxicity, hematotoxicity, and tissue toxicity of the NPs and finally realized the high-resolution fluorescence imaging in living mice. This NP can be used as an effective and safe NIR-II contrastive agent, which provides the possibility for the detection and monitoring of physiological activity under deep tissue in vivo.","PeriodicalId":16449,"journal":{"name":"Journal of Nanophotonics","volume":"16 1","pages":"046009 - 046009"},"PeriodicalIF":1.1000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characteristics of BaYF5:Yb3+, Er3+@BaYF5 nanoparticles as a new near-infrared fluorescence bioimaging probe\",\"authors\":\"Liqing Yang, X. Yang, F. Gao, Q. Fan\",\"doi\":\"10.1117/1.JNP.16.046009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Fluorescent bioimaging technology has been widely used in clinic because of its high sensitivity, quick feedback, and no radiation. Among them, NIR-II imaging has lower absorption, tissue scattering, self-fluorescence, and higher signal-to-noise ratio. As a precursor of nanoprobe, BaYF5 is an excellent material due to its low phonon energy, which makes it easy to achieve rare earth ion energy level transition and obtain strong upconversion luminescence. A near-infrared II (NIR-II) rare earth fluoride nanoparticle (NP) BaYF5 : Yb3 + , Er3 + @ BaYF5 has been constructed. The luminescence principle of the material was deeply analyzed, and the influence of different doping ion ratio on fluorescence intensity was explored. Finally, the optimal doping ratio for this matrix material was obtained. In addition, according to the surface properties of the materials, the water solubility and biocompatibility of the NPs were significantly improved by the modification. Our work also systematically tested and analyzed the cytotoxicity, hematotoxicity, and tissue toxicity of the NPs and finally realized the high-resolution fluorescence imaging in living mice. This NP can be used as an effective and safe NIR-II contrastive agent, which provides the possibility for the detection and monitoring of physiological activity under deep tissue in vivo.\",\"PeriodicalId\":16449,\"journal\":{\"name\":\"Journal of Nanophotonics\",\"volume\":\"16 1\",\"pages\":\"046009 - 046009\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JNP.16.046009\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JNP.16.046009","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Synthesis and characteristics of BaYF5:Yb3+, Er3+@BaYF5 nanoparticles as a new near-infrared fluorescence bioimaging probe
Abstract. Fluorescent bioimaging technology has been widely used in clinic because of its high sensitivity, quick feedback, and no radiation. Among them, NIR-II imaging has lower absorption, tissue scattering, self-fluorescence, and higher signal-to-noise ratio. As a precursor of nanoprobe, BaYF5 is an excellent material due to its low phonon energy, which makes it easy to achieve rare earth ion energy level transition and obtain strong upconversion luminescence. A near-infrared II (NIR-II) rare earth fluoride nanoparticle (NP) BaYF5 : Yb3 + , Er3 + @ BaYF5 has been constructed. The luminescence principle of the material was deeply analyzed, and the influence of different doping ion ratio on fluorescence intensity was explored. Finally, the optimal doping ratio for this matrix material was obtained. In addition, according to the surface properties of the materials, the water solubility and biocompatibility of the NPs were significantly improved by the modification. Our work also systematically tested and analyzed the cytotoxicity, hematotoxicity, and tissue toxicity of the NPs and finally realized the high-resolution fluorescence imaging in living mice. This NP can be used as an effective and safe NIR-II contrastive agent, which provides the possibility for the detection and monitoring of physiological activity under deep tissue in vivo.
期刊介绍:
The Journal of Nanophotonics publishes peer-reviewed papers focusing on the fabrication and application of nanostructures that facilitate the generation, propagation, manipulation, and detection of light from the infrared to the ultraviolet regimes.