球面特征函数的极小接触电路

IF 0.3 Q4 MATHEMATICS, APPLIED
N. P. Redkin
{"title":"球面特征函数的极小接触电路","authors":"N. P. Redkin","doi":"10.1515/dma-2021-0036","DOIUrl":null,"url":null,"abstract":"Abstract We study the complexity of implementation of the characteristic functions of spheres by contact circuits. By the characteristic functions of the sphere with center at a vertex σ̃ = (σ1, …, σn), σ1, …, σn ∈ {0, 1}, we mean the Boolean function φσ~(n) $\\begin{array}{} \\varphi^{(n)}_{\\tilde\\sigma} \\end{array} $(x1, …, xn) which is equal to 1 on those and only those tuples of values that differ from the tuple σ̃ only in one digit. It is shown that the number 3n − 2 of contacts is necessary and sufficient for implementation of φσ~(n) $\\begin{array}{} \\varphi^{(n)}_{\\tilde\\sigma} \\end{array} $(x̃) by a contact circuit.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Minimal contact circuits for characteristic functions of spheres\",\"authors\":\"N. P. Redkin\",\"doi\":\"10.1515/dma-2021-0036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the complexity of implementation of the characteristic functions of spheres by contact circuits. By the characteristic functions of the sphere with center at a vertex σ̃ = (σ1, …, σn), σ1, …, σn ∈ {0, 1}, we mean the Boolean function φσ~(n) $\\\\begin{array}{} \\\\varphi^{(n)}_{\\\\tilde\\\\sigma} \\\\end{array} $(x1, …, xn) which is equal to 1 on those and only those tuples of values that differ from the tuple σ̃ only in one digit. It is shown that the number 3n − 2 of contacts is necessary and sufficient for implementation of φσ~(n) $\\\\begin{array}{} \\\\varphi^{(n)}_{\\\\tilde\\\\sigma} \\\\end{array} $(x̃) by a contact circuit.\",\"PeriodicalId\":11287,\"journal\":{\"name\":\"Discrete Mathematics and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/dma-2021-0036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dma-2021-0036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

摘要研究了用接触电路实现球体特征函数的复杂性。通过以顶点为中心的球的特征函数σn = (σ1,…,σn), σ1,…,σn∈{0,1},我们指的是布尔函数φσ (n) $\begin{array}{} \varphi^{(n)}_{\tilde\sigma} \end{array} $ (x1,…,xn)在且仅在与元组σn只相差一位的元组上等于1。结果表明,对于φσ (n) $\begin{array}{} \varphi^{(n)}_{\tilde\sigma} \end{array} $ (x)的实现,3n−2个触点的个数是充分必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal contact circuits for characteristic functions of spheres
Abstract We study the complexity of implementation of the characteristic functions of spheres by contact circuits. By the characteristic functions of the sphere with center at a vertex σ̃ = (σ1, …, σn), σ1, …, σn ∈ {0, 1}, we mean the Boolean function φσ~(n) $\begin{array}{} \varphi^{(n)}_{\tilde\sigma} \end{array} $(x1, …, xn) which is equal to 1 on those and only those tuples of values that differ from the tuple σ̃ only in one digit. It is shown that the number 3n − 2 of contacts is necessary and sufficient for implementation of φσ~(n) $\begin{array}{} \varphi^{(n)}_{\tilde\sigma} \end{array} $(x̃) by a contact circuit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
20.00%
发文量
29
期刊介绍: The aim of this journal is to provide the latest information on the development of discrete mathematics in the former USSR to a world-wide readership. The journal will contain papers from the Russian-language journal Diskretnaya Matematika, the only journal of the Russian Academy of Sciences devoted to this field of mathematics. Discrete Mathematics and Applications will cover various subjects in the fields such as combinatorial analysis, graph theory, functional systems theory, cryptology, coding, probabilistic problems of discrete mathematics, algorithms and their complexity, combinatorial and computational problems of number theory and of algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信