BURGERS方程解在4维时空中的多尺度奇异性演化

Q3 Mathematics
Sergey V. Zakharov
{"title":"BURGERS方程解在4维时空中的多尺度奇异性演化","authors":"Sergey V. Zakharov","doi":"10.15826/umj.2022.1.012","DOIUrl":null,"url":null,"abstract":"The solution of the Cauchy problem for the vector Burgers equation with a small parameter of dissipation \\(\\varepsilon\\) in the \\(4\\)-dimensional space-time is studied: $$ \\mathbf{u}_t + (\\mathbf{u}\\nabla) \\mathbf{u} = \\varepsilon \\triangle \\mathbf{u}, \\quad u_{\\nu} (\\mathbf{x}, -1, \\varepsilon) = - x_{\\nu} + 4^{-\\nu}(\\nu + 1) x_{\\nu}^{2\\nu + 1}, $$ With the help of the Cole–Hopf transform \\(\\mathbf{u} = - 2 \\varepsilon \\nabla \\ln H,\\) the exact solution and its leading asymptotic approximation, depending on six space-time scales, near a singular point are found. A formula for the growth of partial derivatives of the components of the vector field \\(\\mathbf{u}\\) on the time interval from the initial moment to the singular point, called the formula of the gradient catastrophe, is established: $$ \\frac{\\partial u_{\\nu} (0, t, \\varepsilon)}{\\partial x_{\\nu}} = \\frac{1}{t} \\left[ 1 + O \\left( \\varepsilon |t|^{- 1 - 1/\\nu} \\right) \\right]\\!, \\quad \\frac{t}{\\varepsilon^{\\nu /(\\nu + 1)} } \\to -\\infty, \\quad t \\to -0.$$The asymptotics of the solution far from the singular point, involving a multistep reconstruction of the space-time scales, is also obtained: $$ u_{\\nu} (\\mathbf{x}, t, \\varepsilon) \\approx - 2 \\left( \\frac{t}{\\nu + 1} \\right)^{1/2\\nu} \\tanh \\left[ \\frac{x_{\\nu}}{\\varepsilon} \\left( \\frac{t}{\\nu + 1} \\right)^{1/2\\nu} \\right]\\!, \\quad \\frac{t}{\\varepsilon^{\\nu /(\\nu + 1)} } \\to +\\infty. $$","PeriodicalId":36805,"journal":{"name":"Ural Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"EVOLUTION OF A MULTISCALE SINGULARITY OF THE SOLUTION OF THE BURGERS EQUATION IN THE 4-DIMENSIONAL SPACE–TIME\",\"authors\":\"Sergey V. Zakharov\",\"doi\":\"10.15826/umj.2022.1.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solution of the Cauchy problem for the vector Burgers equation with a small parameter of dissipation \\\\(\\\\varepsilon\\\\) in the \\\\(4\\\\)-dimensional space-time is studied: $$ \\\\mathbf{u}_t + (\\\\mathbf{u}\\\\nabla) \\\\mathbf{u} = \\\\varepsilon \\\\triangle \\\\mathbf{u}, \\\\quad u_{\\\\nu} (\\\\mathbf{x}, -1, \\\\varepsilon) = - x_{\\\\nu} + 4^{-\\\\nu}(\\\\nu + 1) x_{\\\\nu}^{2\\\\nu + 1}, $$ With the help of the Cole–Hopf transform \\\\(\\\\mathbf{u} = - 2 \\\\varepsilon \\\\nabla \\\\ln H,\\\\) the exact solution and its leading asymptotic approximation, depending on six space-time scales, near a singular point are found. A formula for the growth of partial derivatives of the components of the vector field \\\\(\\\\mathbf{u}\\\\) on the time interval from the initial moment to the singular point, called the formula of the gradient catastrophe, is established: $$ \\\\frac{\\\\partial u_{\\\\nu} (0, t, \\\\varepsilon)}{\\\\partial x_{\\\\nu}} = \\\\frac{1}{t} \\\\left[ 1 + O \\\\left( \\\\varepsilon |t|^{- 1 - 1/\\\\nu} \\\\right) \\\\right]\\\\!, \\\\quad \\\\frac{t}{\\\\varepsilon^{\\\\nu /(\\\\nu + 1)} } \\\\to -\\\\infty, \\\\quad t \\\\to -0.$$The asymptotics of the solution far from the singular point, involving a multistep reconstruction of the space-time scales, is also obtained: $$ u_{\\\\nu} (\\\\mathbf{x}, t, \\\\varepsilon) \\\\approx - 2 \\\\left( \\\\frac{t}{\\\\nu + 1} \\\\right)^{1/2\\\\nu} \\\\tanh \\\\left[ \\\\frac{x_{\\\\nu}}{\\\\varepsilon} \\\\left( \\\\frac{t}{\\\\nu + 1} \\\\right)^{1/2\\\\nu} \\\\right]\\\\!, \\\\quad \\\\frac{t}{\\\\varepsilon^{\\\\nu /(\\\\nu + 1)} } \\\\to +\\\\infty. $$\",\"PeriodicalId\":36805,\"journal\":{\"name\":\"Ural Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ural Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/umj.2022.1.012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ural Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/umj.2022.1.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

研究了具有小耗散参数的向量Burgers方程在(4)维时空中的Cauchy问题的解:$$\mathbf{u}_t+(\mathbf{u}\nabla)\mathbf{u}=\varepsilon\triangle\mathbf{u},quad u_{\nu}找到。建立了向量场(\mathbf{u})分量在从初始时刻到奇异点的时间间隔上的偏导数增长的公式,称为梯度突变公式:$$\frac{\partial u_{\u}(0,t,\varepsilon)}{\ partial x_{\nu}=\frac{1}{t}\left[1+O\left(\varepsilion|t|^{-1/\nu}\right)\right]\!,\quad\frac{t}{\varepsilon^{\nu/(\nu+1)}}\to-\infty,quad t\ \to-0.$$解的渐近性远离奇异点,涉及时空尺度的多步重建,也得到:$$u_{\nu}(\mathbf{x},t,\varepsilon)\approxy-2\left(\frac{t}{\nu+1}\right)^{1/2\nu}\tanh\left[\frac{x_{\ nu}}!,\quad\frac{t}{\varepsilon^{\nu/(\nu+1)}}\到+\infty$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EVOLUTION OF A MULTISCALE SINGULARITY OF THE SOLUTION OF THE BURGERS EQUATION IN THE 4-DIMENSIONAL SPACE–TIME
The solution of the Cauchy problem for the vector Burgers equation with a small parameter of dissipation \(\varepsilon\) in the \(4\)-dimensional space-time is studied: $$ \mathbf{u}_t + (\mathbf{u}\nabla) \mathbf{u} = \varepsilon \triangle \mathbf{u}, \quad u_{\nu} (\mathbf{x}, -1, \varepsilon) = - x_{\nu} + 4^{-\nu}(\nu + 1) x_{\nu}^{2\nu + 1}, $$ With the help of the Cole–Hopf transform \(\mathbf{u} = - 2 \varepsilon \nabla \ln H,\) the exact solution and its leading asymptotic approximation, depending on six space-time scales, near a singular point are found. A formula for the growth of partial derivatives of the components of the vector field \(\mathbf{u}\) on the time interval from the initial moment to the singular point, called the formula of the gradient catastrophe, is established: $$ \frac{\partial u_{\nu} (0, t, \varepsilon)}{\partial x_{\nu}} = \frac{1}{t} \left[ 1 + O \left( \varepsilon |t|^{- 1 - 1/\nu} \right) \right]\!, \quad \frac{t}{\varepsilon^{\nu /(\nu + 1)} } \to -\infty, \quad t \to -0.$$The asymptotics of the solution far from the singular point, involving a multistep reconstruction of the space-time scales, is also obtained: $$ u_{\nu} (\mathbf{x}, t, \varepsilon) \approx - 2 \left( \frac{t}{\nu + 1} \right)^{1/2\nu} \tanh \left[ \frac{x_{\nu}}{\varepsilon} \left( \frac{t}{\nu + 1} \right)^{1/2\nu} \right]\!, \quad \frac{t}{\varepsilon^{\nu /(\nu + 1)} } \to +\infty. $$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ural Mathematical Journal
Ural Mathematical Journal Mathematics-Mathematics (all)
CiteScore
1.30
自引率
0.00%
发文量
12
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信