G. Kalaimurugan, P. Vignesh, M. Afkhami, Z. Barati
{"title":"无恒等交换环零除数图的平面索引和外平面索引","authors":"G. Kalaimurugan, P. Vignesh, M. Afkhami, Z. Barati","doi":"10.24330/ieja.1152714","DOIUrl":null,"url":null,"abstract":"Let $R$ be a commutative ring without identity. The zero-divisor graph of $R,$ denoted by $\\Gamma(R)$ is a graph with vertex set $Z(R)\\setminus \\{0\\}$ which is the set of all nonzero zero-divisor elements of $R,$ and two distinct vertices $x$ and $y$ are adjacent if and only if $xy=0.$ In this paper, we characterize the rings whose zero-divisor graphs are ring graphs and outerplanar graphs. Further, we establish the planar index, ring index and outerplanar index of the zero-divisor graphs of finite commutative rings without identity.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Planar index and outerplanar index of zero-divisor graphs of commutative rings without identity\",\"authors\":\"G. Kalaimurugan, P. Vignesh, M. Afkhami, Z. Barati\",\"doi\":\"10.24330/ieja.1152714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a commutative ring without identity. The zero-divisor graph of $R,$ denoted by $\\\\Gamma(R)$ is a graph with vertex set $Z(R)\\\\setminus \\\\{0\\\\}$ which is the set of all nonzero zero-divisor elements of $R,$ and two distinct vertices $x$ and $y$ are adjacent if and only if $xy=0.$ In this paper, we characterize the rings whose zero-divisor graphs are ring graphs and outerplanar graphs. Further, we establish the planar index, ring index and outerplanar index of the zero-divisor graphs of finite commutative rings without identity.\",\"PeriodicalId\":43749,\"journal\":{\"name\":\"International Electronic Journal of Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24330/ieja.1152714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1152714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Planar index and outerplanar index of zero-divisor graphs of commutative rings without identity
Let $R$ be a commutative ring without identity. The zero-divisor graph of $R,$ denoted by $\Gamma(R)$ is a graph with vertex set $Z(R)\setminus \{0\}$ which is the set of all nonzero zero-divisor elements of $R,$ and two distinct vertices $x$ and $y$ are adjacent if and only if $xy=0.$ In this paper, we characterize the rings whose zero-divisor graphs are ring graphs and outerplanar graphs. Further, we establish the planar index, ring index and outerplanar index of the zero-divisor graphs of finite commutative rings without identity.
期刊介绍:
The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.