Randy L. Caga-anan, M. Raza, Grace Shelda G. Labrador, E. Metillo, P. Castillo, Y. Mammeri
{"title":"疫苗接种对COVID-19疾病进展和群体免疫的影响","authors":"Randy L. Caga-anan, M. Raza, Grace Shelda G. Labrador, E. Metillo, P. Castillo, Y. Mammeri","doi":"10.1515/cmb-2020-0127","DOIUrl":null,"url":null,"abstract":"Abstract A mathematical model of COVID-19 with a delay-term for the vaccinated compartment is developed. It has parameters accounting for vaccine-induced immunity delay, vaccine effectiveness, vaccination rate, and vaccine-induced immunity duration. The model parameters before vaccination are calibrated with the Philippines’ confirmed cases. Simulations show that vaccination has a significant effect in reducing future infections, with the vaccination rate being the dominant determining factor of the level of reduction. Moreover, depending on the vaccination rate and the vaccine-induced immunity duration, the system could reach a disease-free state but could not attain herd immunity. Simulations are also done to compare the effects of the various available vaccines. Results show that Pfizer-BioNTech has the most promising effect while Sinovac has the worst result relative to the others.","PeriodicalId":34018,"journal":{"name":"Computational and Mathematical Biophysics","volume":"9 1","pages":"262 - 272"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Effect of Vaccination to COVID-19 Disease Progression and Herd Immunity\",\"authors\":\"Randy L. Caga-anan, M. Raza, Grace Shelda G. Labrador, E. Metillo, P. Castillo, Y. Mammeri\",\"doi\":\"10.1515/cmb-2020-0127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A mathematical model of COVID-19 with a delay-term for the vaccinated compartment is developed. It has parameters accounting for vaccine-induced immunity delay, vaccine effectiveness, vaccination rate, and vaccine-induced immunity duration. The model parameters before vaccination are calibrated with the Philippines’ confirmed cases. Simulations show that vaccination has a significant effect in reducing future infections, with the vaccination rate being the dominant determining factor of the level of reduction. Moreover, depending on the vaccination rate and the vaccine-induced immunity duration, the system could reach a disease-free state but could not attain herd immunity. Simulations are also done to compare the effects of the various available vaccines. Results show that Pfizer-BioNTech has the most promising effect while Sinovac has the worst result relative to the others.\",\"PeriodicalId\":34018,\"journal\":{\"name\":\"Computational and Mathematical Biophysics\",\"volume\":\"9 1\",\"pages\":\"262 - 272\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cmb-2020-0127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cmb-2020-0127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Effect of Vaccination to COVID-19 Disease Progression and Herd Immunity
Abstract A mathematical model of COVID-19 with a delay-term for the vaccinated compartment is developed. It has parameters accounting for vaccine-induced immunity delay, vaccine effectiveness, vaccination rate, and vaccine-induced immunity duration. The model parameters before vaccination are calibrated with the Philippines’ confirmed cases. Simulations show that vaccination has a significant effect in reducing future infections, with the vaccination rate being the dominant determining factor of the level of reduction. Moreover, depending on the vaccination rate and the vaccine-induced immunity duration, the system could reach a disease-free state but could not attain herd immunity. Simulations are also done to compare the effects of the various available vaccines. Results show that Pfizer-BioNTech has the most promising effect while Sinovac has the worst result relative to the others.