Young函数族与Orlicz范数极限

Pub Date : 2022-09-02 DOI:10.4153/s0008439523000449
S. Rodney, S. F. MacDonald
{"title":"Young函数族与Orlicz范数极限","authors":"S. Rodney, S. F. MacDonald","doi":"10.4153/s0008439523000449","DOIUrl":null,"url":null,"abstract":"Given a $\\sigma$-finite measure space $(X,\\mu)$, a Young function $\\Phi$, and a one-parameter family of Young functions $\\{\\Psi_q\\}$, we find necessary and sufficient conditions for the associated Orlicz norms of any function $f\\in L^\\Phi(X,\\mu)$ to satisfy \\[ \\lim_{q\\rightarrow \\infty}\\|f\\|_{L^{\\Psi_q}(X,\\mu)}=C\\|f\\|_{L^\\infty(X,\\mu)}. \\] The constant $C$ is independent of $f$ and depends only on the family $\\{\\Psi_q\\}$. Several examples of one-parameter families of Young functions satisfying our conditions are given, along with counterexamples when our conditions fail.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Families of Young Functions and Limits of Orlicz Norms\",\"authors\":\"S. Rodney, S. F. MacDonald\",\"doi\":\"10.4153/s0008439523000449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a $\\\\sigma$-finite measure space $(X,\\\\mu)$, a Young function $\\\\Phi$, and a one-parameter family of Young functions $\\\\{\\\\Psi_q\\\\}$, we find necessary and sufficient conditions for the associated Orlicz norms of any function $f\\\\in L^\\\\Phi(X,\\\\mu)$ to satisfy \\\\[ \\\\lim_{q\\\\rightarrow \\\\infty}\\\\|f\\\\|_{L^{\\\\Psi_q}(X,\\\\mu)}=C\\\\|f\\\\|_{L^\\\\infty(X,\\\\mu)}. \\\\] The constant $C$ is independent of $f$ and depends only on the family $\\\\{\\\\Psi_q\\\\}$. Several examples of one-parameter families of Young functions satisfying our conditions are given, along with counterexamples when our conditions fail.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008439523000449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/s0008439523000449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定a $\sigma$-有限测度空间 $(X,\mu)$,杨氏函数 $\Phi$,以及单参数杨氏函数族 $\{\Psi_q\}$得到了任意函数的相关Orlicz范数存在的充分必要条件 $f\in L^\Phi(X,\mu)$ 满足 \[ \lim_{q\rightarrow \infty}\|f\|_{L^{\Psi_q}(X,\mu)}=C\|f\|_{L^\infty(X,\mu)}. \] 常数 $C$ 独立于 $f$ 而且只取决于家庭 $\{\Psi_q\}$. 给出了满足条件的单参数杨氏函数族的几个例子,以及当条件不满足时的反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Families of Young Functions and Limits of Orlicz Norms
Given a $\sigma$-finite measure space $(X,\mu)$, a Young function $\Phi$, and a one-parameter family of Young functions $\{\Psi_q\}$, we find necessary and sufficient conditions for the associated Orlicz norms of any function $f\in L^\Phi(X,\mu)$ to satisfy \[ \lim_{q\rightarrow \infty}\|f\|_{L^{\Psi_q}(X,\mu)}=C\|f\|_{L^\infty(X,\mu)}. \] The constant $C$ is independent of $f$ and depends only on the family $\{\Psi_q\}$. Several examples of one-parameter families of Young functions satisfying our conditions are given, along with counterexamples when our conditions fail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信