生物活性噻二唑支架的绿色合成方法

IF 0.9 Q4 CHEMISTRY, PHYSICAL
B. Sahoo, B. Banik, A. Tiwari, V. Tiwari, Manojkumar Mahapatra
{"title":"生物活性噻二唑支架的绿色合成方法","authors":"B. Sahoo, B. Banik, A. Tiwari, V. Tiwari, Manojkumar Mahapatra","doi":"10.2174/2213337210666230210142303","DOIUrl":null,"url":null,"abstract":"\n\nThiadiazole is a paradigm of five membered heterocyclic compound that contains two nitrogens and one sulphur as heteroatoms with molecular formula C2H2N2S. Thiadiazole is mainly present in four isomeric forms such as 1,2,3-thiadiazole, 1,2,4-thiadiazole, 1,2,5-thiadiazole and 1,3,4-thiadiazole. Out of these isomers, 1,3,4-thiadiazole has attracted remarkable attention in the field of medicinal chemistry. Some of the drugs containing 1,3,4-thiadiazole moiety are used clinically and are available in the market including Sulphamethizole (Antibacterial), Acetazolamide (Diuretic), Azetepa (Antineoplastic), Cefazolin (Antibiotic), Megazol (Antiprotozoal), Atibeprone (anti-depressant). Several greener approaches are applied for the synthesis of thiadiazole scaffolds including microwave irradiation, ultrasonic irradiation, grinding, ball milling technique, etc. These methods are eco-friendly, nonhazardous, reproducible, and economical approach. Based on these Green chemistry approaches, thiadiazole derivatives are synthesized from thiosemicarbazide. The functionalization of these heterocyclic compounds generates thiadiazole derivatives with diverse chemical structures. This review covers green synthesis, biological potentials, and structure activity relationship study of thiadiazole analogs.\n","PeriodicalId":10945,"journal":{"name":"Current Organocatalysis","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Greener Approaches for Synthesis of Bioactive Thiadiazole Scaffolds\",\"authors\":\"B. Sahoo, B. Banik, A. Tiwari, V. Tiwari, Manojkumar Mahapatra\",\"doi\":\"10.2174/2213337210666230210142303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nThiadiazole is a paradigm of five membered heterocyclic compound that contains two nitrogens and one sulphur as heteroatoms with molecular formula C2H2N2S. Thiadiazole is mainly present in four isomeric forms such as 1,2,3-thiadiazole, 1,2,4-thiadiazole, 1,2,5-thiadiazole and 1,3,4-thiadiazole. Out of these isomers, 1,3,4-thiadiazole has attracted remarkable attention in the field of medicinal chemistry. Some of the drugs containing 1,3,4-thiadiazole moiety are used clinically and are available in the market including Sulphamethizole (Antibacterial), Acetazolamide (Diuretic), Azetepa (Antineoplastic), Cefazolin (Antibiotic), Megazol (Antiprotozoal), Atibeprone (anti-depressant). Several greener approaches are applied for the synthesis of thiadiazole scaffolds including microwave irradiation, ultrasonic irradiation, grinding, ball milling technique, etc. These methods are eco-friendly, nonhazardous, reproducible, and economical approach. Based on these Green chemistry approaches, thiadiazole derivatives are synthesized from thiosemicarbazide. The functionalization of these heterocyclic compounds generates thiadiazole derivatives with diverse chemical structures. This review covers green synthesis, biological potentials, and structure activity relationship study of thiadiazole analogs.\\n\",\"PeriodicalId\":10945,\"journal\":{\"name\":\"Current Organocatalysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Organocatalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2213337210666230210142303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organocatalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2213337210666230210142303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

噻二唑是一种五元杂环化合物,含有两个氮和一个硫作为杂原子,分子式为C2H2N2S。噻二唑主要以四种异构形式存在,如1,2,3-噻二唑、1,2,4-噻二噻唑、1,2,5-噻二咪唑和1,3,4-噻三唑。在这些异构体中,1,3,4-噻二唑在药物化学领域引起了极大的关注。一些含有1,3,4-噻二唑部分的药物在临床上使用,并可在市场上买到,包括磺胺甲恶唑(抗菌)、乙酰唑胺(利尿剂)、阿泽特帕(抗肿瘤)、头孢唑林(抗生素)、Megazol(抗原生动物)、Atibeprod(抗抑郁药)。几种更环保的方法被应用于噻二唑支架的合成,包括微波辐照、超声辐照、研磨、球磨技术等。这些方法是环保、无害、可再生和经济的方法。基于这些绿色化学方法,以氨基硫脲为原料合成噻二唑衍生物。这些杂环化合物的官能化产生具有不同化学结构的噻二唑衍生物。综述了噻二唑类似物的绿色合成、生物潜力及构效关系研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Greener Approaches for Synthesis of Bioactive Thiadiazole Scaffolds
Thiadiazole is a paradigm of five membered heterocyclic compound that contains two nitrogens and one sulphur as heteroatoms with molecular formula C2H2N2S. Thiadiazole is mainly present in four isomeric forms such as 1,2,3-thiadiazole, 1,2,4-thiadiazole, 1,2,5-thiadiazole and 1,3,4-thiadiazole. Out of these isomers, 1,3,4-thiadiazole has attracted remarkable attention in the field of medicinal chemistry. Some of the drugs containing 1,3,4-thiadiazole moiety are used clinically and are available in the market including Sulphamethizole (Antibacterial), Acetazolamide (Diuretic), Azetepa (Antineoplastic), Cefazolin (Antibiotic), Megazol (Antiprotozoal), Atibeprone (anti-depressant). Several greener approaches are applied for the synthesis of thiadiazole scaffolds including microwave irradiation, ultrasonic irradiation, grinding, ball milling technique, etc. These methods are eco-friendly, nonhazardous, reproducible, and economical approach. Based on these Green chemistry approaches, thiadiazole derivatives are synthesized from thiosemicarbazide. The functionalization of these heterocyclic compounds generates thiadiazole derivatives with diverse chemical structures. This review covers green synthesis, biological potentials, and structure activity relationship study of thiadiazole analogs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Organocatalysis
Current Organocatalysis CHEMISTRY, PHYSICAL-
CiteScore
2.00
自引率
0.00%
发文量
28
期刊介绍: Current Organocatalysis is an international peer-reviewed journal that publishes significant research in all areas of organocatalysis. The journal covers organo homogeneous/heterogeneous catalysis, innovative mechanistic studies and kinetics of organocatalytic processes focusing on practical, theoretical and computational aspects. It also includes potential applications of organocatalysts in the fields of drug discovery, synthesis of novel molecules, synthetic method development, green chemistry and chemoenzymatic reactions. This journal also accepts papers on methods, reagents, and mechanism of a synthetic process and technology pertaining to chemistry. Moreover, this journal features full-length/mini review articles within organocatalysis and synthetic chemistry. It is the premier source of organocatalysis and synthetic methods related information for chemists, biologists and engineers pursuing research in industry and academia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信