{"title":"从字典中组装文本的经典和量子算法","authors":"K. Khadiev, Vladislav Remidovskii","doi":"10.33581/1561-4085-2021-24-3-207-221","DOIUrl":null,"url":null,"abstract":"We study algorithms for solving the problem of assembling a text (long string) from a dictionary (a sequence of small strings). The problem has an application in bioinformatics and has a connection with the sequence assembly method for reconstructing a long deoxyribonucleic-acid (DNA) sequence from small fragments. The problem is assembling a string t of length n from strings s1,...,sm. Firstly, we provide a classical (randomized) algorithm with running time Õ(nL0.5 + L) where L is the sum of lengths of s1,...,sm. Secondly, we provide a quantum algorithm with running time Õ(nL0.25 + √mL). Thirdly, we show the lower bound for a classical (randomized or deterministic) algorithm that is Ω(n+L). So, we obtain the quadratic quantum speed-up with respect to the parameter L; and our quantum algorithm have smaller running time comparing to any classical (randomized or deterministic) algorithm in the case of non-constant length of strings in the dictionary.","PeriodicalId":43601,"journal":{"name":"Nonlinear Phenomena in Complex Systems","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Classical and Quantum Algorithms for Assembling a Text from a Dictionary\",\"authors\":\"K. Khadiev, Vladislav Remidovskii\",\"doi\":\"10.33581/1561-4085-2021-24-3-207-221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study algorithms for solving the problem of assembling a text (long string) from a dictionary (a sequence of small strings). The problem has an application in bioinformatics and has a connection with the sequence assembly method for reconstructing a long deoxyribonucleic-acid (DNA) sequence from small fragments. The problem is assembling a string t of length n from strings s1,...,sm. Firstly, we provide a classical (randomized) algorithm with running time Õ(nL0.5 + L) where L is the sum of lengths of s1,...,sm. Secondly, we provide a quantum algorithm with running time Õ(nL0.25 + √mL). Thirdly, we show the lower bound for a classical (randomized or deterministic) algorithm that is Ω(n+L). So, we obtain the quadratic quantum speed-up with respect to the parameter L; and our quantum algorithm have smaller running time comparing to any classical (randomized or deterministic) algorithm in the case of non-constant length of strings in the dictionary.\",\"PeriodicalId\":43601,\"journal\":{\"name\":\"Nonlinear Phenomena in Complex Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Phenomena in Complex Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33581/1561-4085-2021-24-3-207-221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Phenomena in Complex Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33581/1561-4085-2021-24-3-207-221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Classical and Quantum Algorithms for Assembling a Text from a Dictionary
We study algorithms for solving the problem of assembling a text (long string) from a dictionary (a sequence of small strings). The problem has an application in bioinformatics and has a connection with the sequence assembly method for reconstructing a long deoxyribonucleic-acid (DNA) sequence from small fragments. The problem is assembling a string t of length n from strings s1,...,sm. Firstly, we provide a classical (randomized) algorithm with running time Õ(nL0.5 + L) where L is the sum of lengths of s1,...,sm. Secondly, we provide a quantum algorithm with running time Õ(nL0.25 + √mL). Thirdly, we show the lower bound for a classical (randomized or deterministic) algorithm that is Ω(n+L). So, we obtain the quadratic quantum speed-up with respect to the parameter L; and our quantum algorithm have smaller running time comparing to any classical (randomized or deterministic) algorithm in the case of non-constant length of strings in the dictionary.