穿孔环面群空间的局部连通性

IF 0.5 4区 数学 Q3 MATHEMATICS
Sungbok Hong, Jihoon Park
{"title":"穿孔环面群空间的局部连通性","authors":"Sungbok Hong, Jihoon Park","doi":"10.18910/73625","DOIUrl":null,"url":null,"abstract":"We will give a necessary condition for local connectedness of the space of Kleinian punctured torus group using Bromgerg’s local coordinate system and provide a sufficient condition for local connectedness on a dense subset of the necessary condition. That is, the collection of the points where the boundary of the space of punctured torus group is not locally connected is a dense subset of the points satisfying the necessary condition.","PeriodicalId":54660,"journal":{"name":"Osaka Journal of Mathematics","volume":"56 1","pages":"727-737"},"PeriodicalIF":0.5000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local connectedness of the space of punctured torus group\",\"authors\":\"Sungbok Hong, Jihoon Park\",\"doi\":\"10.18910/73625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We will give a necessary condition for local connectedness of the space of Kleinian punctured torus group using Bromgerg’s local coordinate system and provide a sufficient condition for local connectedness on a dense subset of the necessary condition. That is, the collection of the points where the boundary of the space of punctured torus group is not locally connected is a dense subset of the points satisfying the necessary condition.\",\"PeriodicalId\":54660,\"journal\":{\"name\":\"Osaka Journal of Mathematics\",\"volume\":\"56 1\",\"pages\":\"727-737\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Osaka Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/73625\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osaka Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/73625","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用Bromgerg局部坐标系给出了Kleinian穿孔环面群空间局部连通的一个必要条件,并在该必要条件的密集子集上给出了局部连通的一个充分条件。即被刺穿环面群空间边界不局部连通的点的集合是满足必要条件的点的密集子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local connectedness of the space of punctured torus group
We will give a necessary condition for local connectedness of the space of Kleinian punctured torus group using Bromgerg’s local coordinate system and provide a sufficient condition for local connectedness on a dense subset of the necessary condition. That is, the collection of the points where the boundary of the space of punctured torus group is not locally connected is a dense subset of the points satisfying the necessary condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Osaka Journal of Mathematics is published quarterly by the joint editorship of the Department of Mathematics, Graduate School of Science, Osaka University, and the Department of Mathematics, Faculty of Science, Osaka City University and the Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University with the cooperation of the Department of Mathematical Sciences, Faculty of Engineering Science, Osaka University. The Journal is devoted entirely to the publication of original works in pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信