A. Emam, S. Afonso, P. González-Redondo, G. Mehaisen, A. Azoz, N. A. Ahmed, N. Fernand
{"title":"利用线粒体DNA序列分析比较埃及本地兔与西班牙普通兔的地位和来源","authors":"A. Emam, S. Afonso, P. González-Redondo, G. Mehaisen, A. Azoz, N. A. Ahmed, N. Fernand","doi":"10.4995/wrs.2020.12219","DOIUrl":null,"url":null,"abstract":"Mitochondrial DNA (mtDNA) and cytochrome b (cyt b) gene sequences were used to determine the status of genetic diversity and phylogeny for 132 individuals from local rabbit breeds in Egypt and Spain. The Egyptian local rabbit breeds were Egyptian Red Baladi (ERB), Egyptian Black Baladi (EBB) and Egyptian Gabali Sinai (EGS). However, the Spanish local rabbit breed was Spanish common rabbit (SCR). Previous breeds were compared with European Wild Rabbit taken from Albacete, Spain (EWR). A total of 353 mutations, 290 polymorphic sites, 14 haplotypes, 0.06126 haplotype diversity and –1.900 (P<0.05) for Tajima’s D were defined in this study. Haplotype A mostly occurred in 83.3% of Egyptian rabbits and 11.7 % of EWR, while haplotype B occurred in 63.8% of Spanish rabbits and 36.2% of the EGS breed. A total of 47 domestic and wild Oryctolagus cuniculus published sequences were used to investigate the origin and relation among the rabbit breeds tested in this study. The most common haplotype (A) was combined with 44.7% of published sequences. However, haplotype B was combined with 8.5%. Haplotypes of Egyptian, SCR and EWR were scattered in cluster 1, while we found only one EGS haplotype with two haplotypes of EWR in cluster 2. Our results assumed that genetic diversity for ERB, EBB and SCR was very low. Egyptian breeds and SCR were introduced from European rabbits. We found that ERB and EBB belong to one breed.","PeriodicalId":23902,"journal":{"name":"World Rabbit Science","volume":"28 1","pages":"93-102"},"PeriodicalIF":0.8000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Status and origin of Egyptian local rabbits in comparison with Spanish common rabbits using mitochondrial DNA sequence analysis\",\"authors\":\"A. Emam, S. Afonso, P. González-Redondo, G. Mehaisen, A. Azoz, N. A. Ahmed, N. Fernand\",\"doi\":\"10.4995/wrs.2020.12219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mitochondrial DNA (mtDNA) and cytochrome b (cyt b) gene sequences were used to determine the status of genetic diversity and phylogeny for 132 individuals from local rabbit breeds in Egypt and Spain. The Egyptian local rabbit breeds were Egyptian Red Baladi (ERB), Egyptian Black Baladi (EBB) and Egyptian Gabali Sinai (EGS). However, the Spanish local rabbit breed was Spanish common rabbit (SCR). Previous breeds were compared with European Wild Rabbit taken from Albacete, Spain (EWR). A total of 353 mutations, 290 polymorphic sites, 14 haplotypes, 0.06126 haplotype diversity and –1.900 (P<0.05) for Tajima’s D were defined in this study. Haplotype A mostly occurred in 83.3% of Egyptian rabbits and 11.7 % of EWR, while haplotype B occurred in 63.8% of Spanish rabbits and 36.2% of the EGS breed. A total of 47 domestic and wild Oryctolagus cuniculus published sequences were used to investigate the origin and relation among the rabbit breeds tested in this study. The most common haplotype (A) was combined with 44.7% of published sequences. However, haplotype B was combined with 8.5%. Haplotypes of Egyptian, SCR and EWR were scattered in cluster 1, while we found only one EGS haplotype with two haplotypes of EWR in cluster 2. Our results assumed that genetic diversity for ERB, EBB and SCR was very low. Egyptian breeds and SCR were introduced from European rabbits. We found that ERB and EBB belong to one breed.\",\"PeriodicalId\":23902,\"journal\":{\"name\":\"World Rabbit Science\",\"volume\":\"28 1\",\"pages\":\"93-102\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Rabbit Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.4995/wrs.2020.12219\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Rabbit Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.4995/wrs.2020.12219","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Status and origin of Egyptian local rabbits in comparison with Spanish common rabbits using mitochondrial DNA sequence analysis
Mitochondrial DNA (mtDNA) and cytochrome b (cyt b) gene sequences were used to determine the status of genetic diversity and phylogeny for 132 individuals from local rabbit breeds in Egypt and Spain. The Egyptian local rabbit breeds were Egyptian Red Baladi (ERB), Egyptian Black Baladi (EBB) and Egyptian Gabali Sinai (EGS). However, the Spanish local rabbit breed was Spanish common rabbit (SCR). Previous breeds were compared with European Wild Rabbit taken from Albacete, Spain (EWR). A total of 353 mutations, 290 polymorphic sites, 14 haplotypes, 0.06126 haplotype diversity and –1.900 (P<0.05) for Tajima’s D were defined in this study. Haplotype A mostly occurred in 83.3% of Egyptian rabbits and 11.7 % of EWR, while haplotype B occurred in 63.8% of Spanish rabbits and 36.2% of the EGS breed. A total of 47 domestic and wild Oryctolagus cuniculus published sequences were used to investigate the origin and relation among the rabbit breeds tested in this study. The most common haplotype (A) was combined with 44.7% of published sequences. However, haplotype B was combined with 8.5%. Haplotypes of Egyptian, SCR and EWR were scattered in cluster 1, while we found only one EGS haplotype with two haplotypes of EWR in cluster 2. Our results assumed that genetic diversity for ERB, EBB and SCR was very low. Egyptian breeds and SCR were introduced from European rabbits. We found that ERB and EBB belong to one breed.
期刊介绍:
World Rabbit Science is the official journal of the World Rabbit Science Association (WRSA). One of the main objectives of the WRSA is to encourage communication and collaboration among individuals and organisations associated with rabbit production and rabbit science in general. Subject areas include breeding, genetics, production, management, environment, health, nutrition, physiology, reproduction, behaviour, welfare, immunology, molecular biology, metabolism, processing and products.
World Rabbit Science is the only international peer-reviewed journal included in the ISI Thomson list dedicated to publish original research in the field of rabbit science. Papers or reviews of the literature submitted to World Rabbit Science must not have been published previously in an international refereed scientific journal. Previous presentations at a scientific meeting, field day reports or similar documents can be published in World Rabbit Science, but they will be also subjected to the peer-review process.
World Rabbit Science will publish papers of international relevance including original research articles, descriptions of novel techniques, contemporaryreviews and meta-analyses. Short communications will only accepted in special cases where, in the Editor''s judgement, the contents are exceptionally exciting, novel or timely. Proceedings of rabbit scientific meetings and conference reports will be considered for special issues.
World Rabbit Science is published in English four times a year in a single volume. Authors may publish in World Rabbit Science regardless of the membership in the World Rabbit Science Association, even if joining the WRSA is encouraged. Views expressed in papers published in World Rabbit Science represent the opinion of the author(s) and do not necessarily reflect the official policy of the WRSA or the Editor-in-Chief.