{"title":"论体积和细分支系数","authors":"Stacey Law, Yuji Okitani","doi":"10.5802/alco.262","DOIUrl":null,"url":null,"abstract":"We prove a recursive formula for plethysm coefficients of the form $a^\\mu_{\\lambda,(m)}$, generalising results on plethysms due to Bruns--Conca--Varbaro and de Boeck--Paget--Wildon. From this we deduce a stability result and resolve two conjectures of de Boeck concerning plethysms, as well as obtain new results on Sylow branching coefficients for symmetric groups for the prime 2. Further, letting $P_n$ denote a Sylow 2-subgroup of $S_n$, we show that almost all Sylow branching coefficients of $S_n$ corresponding to the trivial character of $P_n$ are positive.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On plethysms and Sylow branching coefficients\",\"authors\":\"Stacey Law, Yuji Okitani\",\"doi\":\"10.5802/alco.262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a recursive formula for plethysm coefficients of the form $a^\\\\mu_{\\\\lambda,(m)}$, generalising results on plethysms due to Bruns--Conca--Varbaro and de Boeck--Paget--Wildon. From this we deduce a stability result and resolve two conjectures of de Boeck concerning plethysms, as well as obtain new results on Sylow branching coefficients for symmetric groups for the prime 2. Further, letting $P_n$ denote a Sylow 2-subgroup of $S_n$, we show that almost all Sylow branching coefficients of $S_n$ corresponding to the trivial character of $P_n$ are positive.\",\"PeriodicalId\":36046,\"journal\":{\"name\":\"Algebraic Combinatorics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/alco.262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
We prove a recursive formula for plethysm coefficients of the form $a^\mu_{\lambda,(m)}$, generalising results on plethysms due to Bruns--Conca--Varbaro and de Boeck--Paget--Wildon. From this we deduce a stability result and resolve two conjectures of de Boeck concerning plethysms, as well as obtain new results on Sylow branching coefficients for symmetric groups for the prime 2. Further, letting $P_n$ denote a Sylow 2-subgroup of $S_n$, we show that almost all Sylow branching coefficients of $S_n$ corresponding to the trivial character of $P_n$ are positive.