论体积和细分支系数

Q3 Mathematics
Stacey Law, Yuji Okitani
{"title":"论体积和细分支系数","authors":"Stacey Law, Yuji Okitani","doi":"10.5802/alco.262","DOIUrl":null,"url":null,"abstract":"We prove a recursive formula for plethysm coefficients of the form $a^\\mu_{\\lambda,(m)}$, generalising results on plethysms due to Bruns--Conca--Varbaro and de Boeck--Paget--Wildon. From this we deduce a stability result and resolve two conjectures of de Boeck concerning plethysms, as well as obtain new results on Sylow branching coefficients for symmetric groups for the prime 2. Further, letting $P_n$ denote a Sylow 2-subgroup of $S_n$, we show that almost all Sylow branching coefficients of $S_n$ corresponding to the trivial character of $P_n$ are positive.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On plethysms and Sylow branching coefficients\",\"authors\":\"Stacey Law, Yuji Okitani\",\"doi\":\"10.5802/alco.262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a recursive formula for plethysm coefficients of the form $a^\\\\mu_{\\\\lambda,(m)}$, generalising results on plethysms due to Bruns--Conca--Varbaro and de Boeck--Paget--Wildon. From this we deduce a stability result and resolve two conjectures of de Boeck concerning plethysms, as well as obtain new results on Sylow branching coefficients for symmetric groups for the prime 2. Further, letting $P_n$ denote a Sylow 2-subgroup of $S_n$, we show that almost all Sylow branching coefficients of $S_n$ corresponding to the trivial character of $P_n$ are positive.\",\"PeriodicalId\":36046,\"journal\":{\"name\":\"Algebraic Combinatorics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/alco.262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

我们证明了形式为$a^\mu_{\lambda,(m)}$的体积描记系数的递归公式,推广了Bruns-Conca-Varbaro和de Boeck-Paget-Wildon关于体积描记的结果。由此我们导出了一个稳定性结果,解决了de Boeck关于体积描记的两个猜想,并得到了关于素数2的对称群的Sylow分支系数的新结果。此外,让$P_n$表示$S_n$的Sylow 2-子群,我们证明了与$P_n$平凡特征相对应的$S_n$几乎所有的Sylow分支系数都是正的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On plethysms and Sylow branching coefficients
We prove a recursive formula for plethysm coefficients of the form $a^\mu_{\lambda,(m)}$, generalising results on plethysms due to Bruns--Conca--Varbaro and de Boeck--Paget--Wildon. From this we deduce a stability result and resolve two conjectures of de Boeck concerning plethysms, as well as obtain new results on Sylow branching coefficients for symmetric groups for the prime 2. Further, letting $P_n$ denote a Sylow 2-subgroup of $S_n$, we show that almost all Sylow branching coefficients of $S_n$ corresponding to the trivial character of $P_n$ are positive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信