优化温室环境的设计与控制研究综述

IF 1 4区 环境科学与生态学 Q4 ECOLOGY
Renuka Vinod Chimankare, Subhra Das, Karamjit Kaur, Dhiraj B. Magare
{"title":"优化温室环境的设计与控制研究综述","authors":"Renuka Vinod Chimankare, Subhra Das, Karamjit Kaur, Dhiraj B. Magare","doi":"10.1017/S0266467423000160","DOIUrl":null,"url":null,"abstract":"Abstract Greenhouses are inflated structures with transparent covering that are used to grow crops under controlled climatic conditions. Crops are protected from extreme climate-related events by being enclosed. Furthermore, the greenhouse design ratio impacts the temperature and humidity distribution profile uniformity as well as the greenhouse. As a result, by effectively designing the greenhouse structure, building materials, dimensions, and shapes, the cost of cooling management strategies can be reduced. Structures with changed arch shapes showed to be more effective at reducing greenhouse cooling demands in hot areas. To demonstrate the tropical region’s inherent capabilities for generating a proper atmosphere for plant development, the optimal temperature, humidity, light, and PH for greenhouse production of crops were supplied. Greenhouse cooling systems are dominated by local environmental characteristics that have an immediate impact on their indoor climatic conditions. Photovoltaic systems in greenhouses have proven technological capacity in real-world settings in this area. This could increase the energy efficiency of some agrivoltaic greenhouse design options.","PeriodicalId":49968,"journal":{"name":"Journal of Tropical Ecology","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A review study on the design and control of optimised greenhouse environments\",\"authors\":\"Renuka Vinod Chimankare, Subhra Das, Karamjit Kaur, Dhiraj B. Magare\",\"doi\":\"10.1017/S0266467423000160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Greenhouses are inflated structures with transparent covering that are used to grow crops under controlled climatic conditions. Crops are protected from extreme climate-related events by being enclosed. Furthermore, the greenhouse design ratio impacts the temperature and humidity distribution profile uniformity as well as the greenhouse. As a result, by effectively designing the greenhouse structure, building materials, dimensions, and shapes, the cost of cooling management strategies can be reduced. Structures with changed arch shapes showed to be more effective at reducing greenhouse cooling demands in hot areas. To demonstrate the tropical region’s inherent capabilities for generating a proper atmosphere for plant development, the optimal temperature, humidity, light, and PH for greenhouse production of crops were supplied. Greenhouse cooling systems are dominated by local environmental characteristics that have an immediate impact on their indoor climatic conditions. Photovoltaic systems in greenhouses have proven technological capacity in real-world settings in this area. This could increase the energy efficiency of some agrivoltaic greenhouse design options.\",\"PeriodicalId\":49968,\"journal\":{\"name\":\"Journal of Tropical Ecology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tropical Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1017/S0266467423000160\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tropical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1017/S0266467423000160","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

摘要温室是一种带有透明覆盖物的膨胀结构,用于在受控的气候条件下种植作物。作物被封闭起来,免受与极端气候相关的事件的影响。此外,温室设计比影响温度和湿度分布剖面的均匀性以及温室。因此,通过有效地设计温室结构、建筑材料、尺寸和形状,可以降低制冷管理策略的成本。改变拱形的结构在减少炎热地区的温室制冷需求方面更有效。为了证明热带地区为植物发育创造适当氛围的固有能力,提供了温室作物生产的最佳温度、湿度、光照和PH值。温室冷却系统主要受当地环境特征的影响,这些环境特征对其室内气候条件有直接影响。温室中的光伏系统已在该领域的现实环境中证明了其技术能力。这可以提高一些农业光伏温室设计方案的能源效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review study on the design and control of optimised greenhouse environments
Abstract Greenhouses are inflated structures with transparent covering that are used to grow crops under controlled climatic conditions. Crops are protected from extreme climate-related events by being enclosed. Furthermore, the greenhouse design ratio impacts the temperature and humidity distribution profile uniformity as well as the greenhouse. As a result, by effectively designing the greenhouse structure, building materials, dimensions, and shapes, the cost of cooling management strategies can be reduced. Structures with changed arch shapes showed to be more effective at reducing greenhouse cooling demands in hot areas. To demonstrate the tropical region’s inherent capabilities for generating a proper atmosphere for plant development, the optimal temperature, humidity, light, and PH for greenhouse production of crops were supplied. Greenhouse cooling systems are dominated by local environmental characteristics that have an immediate impact on their indoor climatic conditions. Photovoltaic systems in greenhouses have proven technological capacity in real-world settings in this area. This could increase the energy efficiency of some agrivoltaic greenhouse design options.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Tropical Ecology
Journal of Tropical Ecology 环境科学-生态学
CiteScore
2.10
自引率
0.00%
发文量
44
审稿时长
18-36 weeks
期刊介绍: Journal of Tropical Ecology aims to address topics of general relevance and significance to tropical ecology. This includes sub-disciplines of ecology, such as conservation biology, evolutionary ecology, marine ecology, microbial ecology, molecular ecology, quantitative ecology, etc. Studies in the field of tropical medicine, specifically where it involves ecological surroundings (e.g., zoonotic or vector-borne disease ecology), are also suitable. We also welcome methods papers, provided that the techniques are well-described and are of broad general utility. Please keep in mind that studies focused on specific geographic regions or on particular taxa will be better suited to more specialist journals. In order to help the editors make their decision, in your cover letter please address the specific hypothesis your study addresses, and how the results will interest the broad field of tropical ecology. While we will consider purely descriptive studies of outstanding general interest, the case for them should be made in the cover letter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信