具有双悬垂路径和Braess边的图族

IF 0.7 4区 数学 Q2 Mathematics
Sooyeon Kim
{"title":"具有双悬垂路径和Braess边的图族","authors":"Sooyeon Kim","doi":"10.13001/ela.2022.5913","DOIUrl":null,"url":null,"abstract":"In the context of a random walk on an undirected graph, Kemeny's constant can measure the average travel time for a random walk between two randomly chosen vertices. We are interested in graphs that behave counter-intuitively in regard to Kemeny's constant: in particular, we examine graphs with a cut-vertex at which at least two branches are paths, regarding whether the insertion of a particular edge into a graph results in an increase of Kemeny's constant. We provide several tools for identifying such an edge in a family of graphs and for analysing asymptotic behaviour of the family regarding the tendency to have that edge; and classes of particular graphs are given as examples. Furthermore, asymptotic behaviours of families of trees are described.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Families of graphs with twin pendent paths and the Braess edge\",\"authors\":\"Sooyeon Kim\",\"doi\":\"10.13001/ela.2022.5913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of a random walk on an undirected graph, Kemeny's constant can measure the average travel time for a random walk between two randomly chosen vertices. We are interested in graphs that behave counter-intuitively in regard to Kemeny's constant: in particular, we examine graphs with a cut-vertex at which at least two branches are paths, regarding whether the insertion of a particular edge into a graph results in an increase of Kemeny's constant. We provide several tools for identifying such an edge in a family of graphs and for analysing asymptotic behaviour of the family regarding the tendency to have that edge; and classes of particular graphs are given as examples. Furthermore, asymptotic behaviours of families of trees are described.\",\"PeriodicalId\":50540,\"journal\":{\"name\":\"Electronic Journal of Linear Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Linear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2022.5913\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.5913","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

在无向图上随机行走的情况下,Kemeny常数可以测量两个随机选择的顶点之间随机行走的平均行进时间。我们对在Kemeny常数方面表现得与直觉相反的图感兴趣:特别是,我们研究具有至少两个分支是路径的割顶点的图,关于将特定边插入图中是否会导致Kemeny常量的增加。我们提供了几种工具来识别图族中的这种边,并分析该族关于具有该边的趋势的渐近行为;并给出了特定图的类作为例子。此外,还描述了树族的渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Families of graphs with twin pendent paths and the Braess edge
In the context of a random walk on an undirected graph, Kemeny's constant can measure the average travel time for a random walk between two randomly chosen vertices. We are interested in graphs that behave counter-intuitively in regard to Kemeny's constant: in particular, we examine graphs with a cut-vertex at which at least two branches are paths, regarding whether the insertion of a particular edge into a graph results in an increase of Kemeny's constant. We provide several tools for identifying such an edge in a family of graphs and for analysing asymptotic behaviour of the family regarding the tendency to have that edge; and classes of particular graphs are given as examples. Furthermore, asymptotic behaviours of families of trees are described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信