曲面上Dirichlet到Neumann算子的谱不变量

IF 1 3区 数学 Q1 MATHEMATICS
J. Lagac'e, Simon St-Amant
{"title":"曲面上Dirichlet到Neumann算子的谱不变量","authors":"J. Lagac'e, Simon St-Amant","doi":"10.4171/jst/382","DOIUrl":null,"url":null,"abstract":"We obtain a complete asymptotic expansion for the eigenvalues of the Dirichlet-to-Neumann maps associated with Schrodinger operators on Riemannian surfaces with boundary. For the zero potential, we recover the well-known spectral asymptotics for the Steklov problem. For nonzero porentials, we obtain new geometric invariants determined by the spectrum. In particular, for constant potentials, which give rise to the parameter-dependent Steklov problem, the total geodesic curvature on each connected component of the boundary is a spectral invariant. Under the constant curvature assumption, this allows us to obtain some interior information from the spectrum of these boundary operators.","PeriodicalId":48789,"journal":{"name":"Journal of Spectral Theory","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spectral invariants of Dirichlet-to-Neumann operators on surfaces\",\"authors\":\"J. Lagac'e, Simon St-Amant\",\"doi\":\"10.4171/jst/382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain a complete asymptotic expansion for the eigenvalues of the Dirichlet-to-Neumann maps associated with Schrodinger operators on Riemannian surfaces with boundary. For the zero potential, we recover the well-known spectral asymptotics for the Steklov problem. For nonzero porentials, we obtain new geometric invariants determined by the spectrum. In particular, for constant potentials, which give rise to the parameter-dependent Steklov problem, the total geodesic curvature on each connected component of the boundary is a spectral invariant. Under the constant curvature assumption, this allows us to obtain some interior information from the spectrum of these boundary operators.\",\"PeriodicalId\":48789,\"journal\":{\"name\":\"Journal of Spectral Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spectral Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jst/382\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jst/382","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们得到了黎曼曲面上与薛定谔算子相关的Dirichlet-to-Neumann映射的特征值的完全渐近展开式。对于零势,我们恢复了Steklov问题的众所周知的谱渐近性。对于非零势,我们得到了由谱决定的新的几何不变量。特别地,对于引起参数依赖的Steklov问题的常数势,边界的每个连接分量上的总测地线曲率是谱不变量。在常曲率假设下,这允许我们从这些边界算子的谱中获得一些内部信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral invariants of Dirichlet-to-Neumann operators on surfaces
We obtain a complete asymptotic expansion for the eigenvalues of the Dirichlet-to-Neumann maps associated with Schrodinger operators on Riemannian surfaces with boundary. For the zero potential, we recover the well-known spectral asymptotics for the Steklov problem. For nonzero porentials, we obtain new geometric invariants determined by the spectrum. In particular, for constant potentials, which give rise to the parameter-dependent Steklov problem, the total geodesic curvature on each connected component of the boundary is a spectral invariant. Under the constant curvature assumption, this allows us to obtain some interior information from the spectrum of these boundary operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Spectral Theory
Journal of Spectral Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
0.00%
发文量
30
期刊介绍: The Journal of Spectral Theory is devoted to the publication of research articles that focus on spectral theory and its many areas of application. Articles of all lengths including surveys of parts of the subject are very welcome. The following list includes several aspects of spectral theory and also fields which feature substantial applications of (or to) spectral theory. Schrödinger operators, scattering theory and resonances; eigenvalues: perturbation theory, asymptotics and inequalities; quantum graphs, graph Laplacians; pseudo-differential operators and semi-classical analysis; random matrix theory; the Anderson model and other random media; non-self-adjoint matrices and operators, including Toeplitz operators; spectral geometry, including manifolds and automorphic forms; linear and nonlinear differential operators, especially those arising in geometry and physics; orthogonal polynomials; inverse problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信