{"title":"胶原/ß-TCP/姜提取物支架负载间充质干细胞在大鼠动物模型中骨形成潜力的评价:体视学研究","authors":"Nader Tanideh, Afsoon Bordbar, Hossein Bordbar, Mohammad Saleh Khaghaninejad, Sajad Daneshi, Shima Torabi Ardekani, Aida Iraji, Shahrokh Zare, Zahra Khodabandeh, Najmeh Sarafraz, Romina Tanideh, Moein Zarei, Cambyz Irajie","doi":"10.1007/s12663-022-01829-9","DOIUrl":null,"url":null,"abstract":"<p><p>Tissue engineering offers a new horizon for restoring the function of damaged tissues and organs. Here, bone regeneration potential of three-dimensional (3D) scaffold made of collagen/beta-tricalcium phosphate/ginger hydroalcoholic extract (COL-ß-TCP-GIN) loaded with stem cells was evaluated. The scaffolds with different component ratios were fabricated using a freeze dryer to obtain the optimum composition. The scaffolds' chemical, physical, and biological characteristics were evaluated using scanning electron microscope, fourier transform infrared spectroscopy, tensile testing machine, and cytotoxicity assay. The optimum scaffold's bone repairing potential was assessed with loaded synovial membrane mesenchymal stem cells (SM-MSCs) in mandibular bone defect of a rat animal model after two months. The ß-TCP component up to 30% could increase the tensile strength of the freeze-dried scaffold. In comparison, the GIN up to 5% was selected as a sufficient amount to be incorporated with the scaffolds. The morphology of scaffolds showed a suitable porosity for cells to proliferate and migrate. In vitro cytotoxicity results showed that GIN increased the cell viability up to 7 days. Regarding in vivo bone regeneration study, histopathology and stereology assessments showed the mandibular bone formation in COL/β-TCP/GIN scaffolds with SM-MSCs group significantly increased compared to COL/β-TCP/GIN without cells and sham groups. These results demonstrated the effectiveness of COL/β-TCP/GIN scaffold with SM-MSCs to induce bone formation, and this composite can be applied in dental and reconstructive surgery.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12663-022-01829-9.</p>","PeriodicalId":47495,"journal":{"name":"Journal of Maxillofacial & Oral Surgery","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11455761/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the Bone Formation Potential of Collagen/ß-TCP/Ginger Extract Scaffold Loaded with Mesenchymal Stem Cells in Rat Animal model: A Stereological Study.\",\"authors\":\"Nader Tanideh, Afsoon Bordbar, Hossein Bordbar, Mohammad Saleh Khaghaninejad, Sajad Daneshi, Shima Torabi Ardekani, Aida Iraji, Shahrokh Zare, Zahra Khodabandeh, Najmeh Sarafraz, Romina Tanideh, Moein Zarei, Cambyz Irajie\",\"doi\":\"10.1007/s12663-022-01829-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tissue engineering offers a new horizon for restoring the function of damaged tissues and organs. Here, bone regeneration potential of three-dimensional (3D) scaffold made of collagen/beta-tricalcium phosphate/ginger hydroalcoholic extract (COL-ß-TCP-GIN) loaded with stem cells was evaluated. The scaffolds with different component ratios were fabricated using a freeze dryer to obtain the optimum composition. The scaffolds' chemical, physical, and biological characteristics were evaluated using scanning electron microscope, fourier transform infrared spectroscopy, tensile testing machine, and cytotoxicity assay. The optimum scaffold's bone repairing potential was assessed with loaded synovial membrane mesenchymal stem cells (SM-MSCs) in mandibular bone defect of a rat animal model after two months. The ß-TCP component up to 30% could increase the tensile strength of the freeze-dried scaffold. In comparison, the GIN up to 5% was selected as a sufficient amount to be incorporated with the scaffolds. The morphology of scaffolds showed a suitable porosity for cells to proliferate and migrate. In vitro cytotoxicity results showed that GIN increased the cell viability up to 7 days. Regarding in vivo bone regeneration study, histopathology and stereology assessments showed the mandibular bone formation in COL/β-TCP/GIN scaffolds with SM-MSCs group significantly increased compared to COL/β-TCP/GIN without cells and sham groups. These results demonstrated the effectiveness of COL/β-TCP/GIN scaffold with SM-MSCs to induce bone formation, and this composite can be applied in dental and reconstructive surgery.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12663-022-01829-9.</p>\",\"PeriodicalId\":47495,\"journal\":{\"name\":\"Journal of Maxillofacial & Oral Surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11455761/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Maxillofacial & Oral Surgery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12663-022-01829-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Maxillofacial & Oral Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12663-022-01829-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Evaluation of the Bone Formation Potential of Collagen/ß-TCP/Ginger Extract Scaffold Loaded with Mesenchymal Stem Cells in Rat Animal model: A Stereological Study.
Tissue engineering offers a new horizon for restoring the function of damaged tissues and organs. Here, bone regeneration potential of three-dimensional (3D) scaffold made of collagen/beta-tricalcium phosphate/ginger hydroalcoholic extract (COL-ß-TCP-GIN) loaded with stem cells was evaluated. The scaffolds with different component ratios were fabricated using a freeze dryer to obtain the optimum composition. The scaffolds' chemical, physical, and biological characteristics were evaluated using scanning electron microscope, fourier transform infrared spectroscopy, tensile testing machine, and cytotoxicity assay. The optimum scaffold's bone repairing potential was assessed with loaded synovial membrane mesenchymal stem cells (SM-MSCs) in mandibular bone defect of a rat animal model after two months. The ß-TCP component up to 30% could increase the tensile strength of the freeze-dried scaffold. In comparison, the GIN up to 5% was selected as a sufficient amount to be incorporated with the scaffolds. The morphology of scaffolds showed a suitable porosity for cells to proliferate and migrate. In vitro cytotoxicity results showed that GIN increased the cell viability up to 7 days. Regarding in vivo bone regeneration study, histopathology and stereology assessments showed the mandibular bone formation in COL/β-TCP/GIN scaffolds with SM-MSCs group significantly increased compared to COL/β-TCP/GIN without cells and sham groups. These results demonstrated the effectiveness of COL/β-TCP/GIN scaffold with SM-MSCs to induce bone formation, and this composite can be applied in dental and reconstructive surgery.
Supplementary information: The online version contains supplementary material available at 10.1007/s12663-022-01829-9.
期刊介绍:
This journal offers comprehensive coverage of new techniques, important developments and innovative ideas in Oral and Maxillofacial Surgery. Practice-applicable articles help develop the methods used to handle dentoalveolar surgery, facial injuries and deformities, TMJ disorders, oral cancer, jaw reconstruction, anesthesia and analgesia. The journal also includes specifics on new instruments, diagnostic equipment’s and modern therapeutic drugs and devices. Journal of Oral and Maxillofacial Surgery is recommended for first or priority subscription by the Dental Section of the Medical Library Association. Specific topics covered recently have included: ? distraction osteogenesis ? synthetic bone substitutes ? fibroblast growth factors ? fetal wound healing ? skull base surgery ? computer-assisted surgery ? vascularized bone grafts Benefits to authorsWe also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services.