下奥地利巴德费舍Eisensteinhöhle的温泉是否受流体构造的影响?

IF 1.7 4区 地球科学 Q2 Earth and Planetary Sciences
Jonas Hardege, Lukas Plan, G. Winkler, B. Grasemann, I. Baroň
{"title":"下奥地利巴德费舍Eisensteinhöhle的温泉是否受流体构造的影响?","authors":"Jonas Hardege, Lukas Plan, G. Winkler, B. Grasemann, I. Baroň","doi":"10.17738/ajes.2019.0009","DOIUrl":null,"url":null,"abstract":"Abstract Eisensteinhöhle is a 2 km long crevice cave that is significantly overprinted by hydrothermal karst processes. It was opened during quarrying in the Fischauer Vorberge, at the western margin of the Vienna Basin. This pull-apart basin cuts the eastern foothills of the Alps and is formed by a major NE-SW striking, sinistral transform fault. The western margin consists of NNE-SSW striking normal faults creating paths for thermal water to rise from the central basin. The deepest part of the cave, 73 m below the entrance, hosts a pond with 14.6 ±0.2 °C warm water that occasionally acts as a spring. The water level and temperature fluctuate and at a certain level, water visibly discharges into a nearby narrow fissure. As sporadic observations of the water level since 1992 gave no obvious connection to precipitation events, the connection to an aquifer and the origin of the water remained unknown. A pumping test, conducted on 13/7/2016, yielded a volume of the spring/pool of about 2.8 m3 that is fed by a very small inlet at the sandy bottom. At the time of the pumping test, the discharge was only 4.5 l/h but during previous overflow events, discharge values of up to 289 l/h were recorded. Water temperature and hydrochemistry hint towards a mixture of an old thermal component and a young meteoric component. During continuous monitoring of water level and temperature from October 2015 until November 2018, the water level was almost stable with few periods of high level (almost at overflow) that lasted for about 3 to 4 weeks each. The water temperature increased during most high stands and is positively correlated with the water level. Correlation of the high-resolution data on water level and temperature fluctuations with precipitation measurements at the nearest meteorological stations show a relation of water level to certain rainfall events and the sporadically taken long time records show a correlation with annual precipitation sums. Long-term observations also indicate a connection to groundwater levels in the Vienna Basin with a delay of about 8 weeks in Bad Fischau. In July 2017, the water level dropped suddenly and then recovered simultaneously in the time of several weak earthquakes in the vicinity. The data suggest that the spring in Eisensteinhöhle is influenced by precipitation. For one seismic event, there is a correlation with unusual water level changes at Eisensteinhöhle, but the rareness of earthquakes demands for a longer time series to confirm this observation.","PeriodicalId":49319,"journal":{"name":"Austrian Journal of Earth Sciences","volume":"112 1","pages":"166 - 181"},"PeriodicalIF":1.7000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Is hydrotectonics influencing the thermal spring in Eisensteinhöhle (Bad Fischau, Lower Austria)?\",\"authors\":\"Jonas Hardege, Lukas Plan, G. Winkler, B. Grasemann, I. Baroň\",\"doi\":\"10.17738/ajes.2019.0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Eisensteinhöhle is a 2 km long crevice cave that is significantly overprinted by hydrothermal karst processes. It was opened during quarrying in the Fischauer Vorberge, at the western margin of the Vienna Basin. This pull-apart basin cuts the eastern foothills of the Alps and is formed by a major NE-SW striking, sinistral transform fault. The western margin consists of NNE-SSW striking normal faults creating paths for thermal water to rise from the central basin. The deepest part of the cave, 73 m below the entrance, hosts a pond with 14.6 ±0.2 °C warm water that occasionally acts as a spring. The water level and temperature fluctuate and at a certain level, water visibly discharges into a nearby narrow fissure. As sporadic observations of the water level since 1992 gave no obvious connection to precipitation events, the connection to an aquifer and the origin of the water remained unknown. A pumping test, conducted on 13/7/2016, yielded a volume of the spring/pool of about 2.8 m3 that is fed by a very small inlet at the sandy bottom. At the time of the pumping test, the discharge was only 4.5 l/h but during previous overflow events, discharge values of up to 289 l/h were recorded. Water temperature and hydrochemistry hint towards a mixture of an old thermal component and a young meteoric component. During continuous monitoring of water level and temperature from October 2015 until November 2018, the water level was almost stable with few periods of high level (almost at overflow) that lasted for about 3 to 4 weeks each. The water temperature increased during most high stands and is positively correlated with the water level. Correlation of the high-resolution data on water level and temperature fluctuations with precipitation measurements at the nearest meteorological stations show a relation of water level to certain rainfall events and the sporadically taken long time records show a correlation with annual precipitation sums. Long-term observations also indicate a connection to groundwater levels in the Vienna Basin with a delay of about 8 weeks in Bad Fischau. In July 2017, the water level dropped suddenly and then recovered simultaneously in the time of several weak earthquakes in the vicinity. The data suggest that the spring in Eisensteinhöhle is influenced by precipitation. For one seismic event, there is a correlation with unusual water level changes at Eisensteinhöhle, but the rareness of earthquakes demands for a longer time series to confirm this observation.\",\"PeriodicalId\":49319,\"journal\":{\"name\":\"Austrian Journal of Earth Sciences\",\"volume\":\"112 1\",\"pages\":\"166 - 181\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Austrian Journal of Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.17738/ajes.2019.0009\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austrian Journal of Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.17738/ajes.2019.0009","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

摘要Eisensteinhöhle是一个2 km长的裂隙溶洞,受热液岩溶作用的显著叠加。它是在维也纳盆地西部边缘的Fischauer Vorberge采石时打开的。这个拉分盆地切断了阿尔卑斯山脉的东部山麓,由一条NE-SW走向的左旋转换断层形成。西缘由北北东-南西西走向的正断层组成,为热水从中央盆地上升创造了通道。洞穴最深处,入口下方73米处有一个池塘,水温为14.6±0.2°C,偶尔会有泉水。水位和温度波动,在一定的水平,水明显排放到附近的一个狭窄的裂缝。由于1992年以来对水位的零星观测没有显示出与降水事件的明显联系,因此与含水层和水的来源的联系仍然未知。在2016年7月13日进行的抽水测试中,泉水/水池的体积约为2.8 m3,由砂质底部的一个非常小的入口提供。在泵送试验时,流量仅为4.5 l/h,但在之前的溢流事件中,流量值高达289 l/h。水温和水化学暗示这是一个古老的热成分和年轻的大气成分的混合物。在2015年10月至2018年11月的水位和温度连续监测中,水位基本稳定,很少有高水位(几乎溢出),每次持续约3至4周。大部分高林分水温升高,且与水位呈正相关。有关水位和温度波动的高分辨率数据与最近气象站的降水测量结果的相关性表明,水位与某些降雨事件有关,而零星采集的长时间记录与年降水量有关。长期观测还表明,与维也纳盆地的地下水水位有关,巴德费舍大约延迟了8周。2017年7月,在附近几次弱地震期间,水位突然下降,然后同时恢复。数据表明Eisensteinhöhle的春季受降水的影响。对于一个地震事件,在Eisensteinhöhle存在与异常水位变化的相关性,但对地震的罕见认识需要更长的时间序列来证实这一观察结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Is hydrotectonics influencing the thermal spring in Eisensteinhöhle (Bad Fischau, Lower Austria)?
Abstract Eisensteinhöhle is a 2 km long crevice cave that is significantly overprinted by hydrothermal karst processes. It was opened during quarrying in the Fischauer Vorberge, at the western margin of the Vienna Basin. This pull-apart basin cuts the eastern foothills of the Alps and is formed by a major NE-SW striking, sinistral transform fault. The western margin consists of NNE-SSW striking normal faults creating paths for thermal water to rise from the central basin. The deepest part of the cave, 73 m below the entrance, hosts a pond with 14.6 ±0.2 °C warm water that occasionally acts as a spring. The water level and temperature fluctuate and at a certain level, water visibly discharges into a nearby narrow fissure. As sporadic observations of the water level since 1992 gave no obvious connection to precipitation events, the connection to an aquifer and the origin of the water remained unknown. A pumping test, conducted on 13/7/2016, yielded a volume of the spring/pool of about 2.8 m3 that is fed by a very small inlet at the sandy bottom. At the time of the pumping test, the discharge was only 4.5 l/h but during previous overflow events, discharge values of up to 289 l/h were recorded. Water temperature and hydrochemistry hint towards a mixture of an old thermal component and a young meteoric component. During continuous monitoring of water level and temperature from October 2015 until November 2018, the water level was almost stable with few periods of high level (almost at overflow) that lasted for about 3 to 4 weeks each. The water temperature increased during most high stands and is positively correlated with the water level. Correlation of the high-resolution data on water level and temperature fluctuations with precipitation measurements at the nearest meteorological stations show a relation of water level to certain rainfall events and the sporadically taken long time records show a correlation with annual precipitation sums. Long-term observations also indicate a connection to groundwater levels in the Vienna Basin with a delay of about 8 weeks in Bad Fischau. In July 2017, the water level dropped suddenly and then recovered simultaneously in the time of several weak earthquakes in the vicinity. The data suggest that the spring in Eisensteinhöhle is influenced by precipitation. For one seismic event, there is a correlation with unusual water level changes at Eisensteinhöhle, but the rareness of earthquakes demands for a longer time series to confirm this observation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Austrian Journal of Earth Sciences
Austrian Journal of Earth Sciences Earth and Planetary Sciences-Paleontology
CiteScore
3.10
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: AUSTRIAN JOURNAL OF EARTH SCIENCES is the official journal of the Austrian Geological, Mineralogical and Palaeontological Societies, hosted by a country that is famous for its spectacular mountains that are the birthplace for many geological and mineralogical concepts in modern Earth science. AUSTRIAN JOURNAL OF EARTH SCIENCE focuses on all aspects relevant to the geosciences of the Alps, Bohemian Massif and surrounding areas. Contributions on other regions are welcome if they embed their findings into a conceptual framework that relates the contribution to Alpine-type orogens and Alpine regions in general, and are thus relevant to an international audience. Contributions are subject to peer review and editorial control according to SCI guidelines to ensure that the required standard of scientific excellence is maintained.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信