利用人工智能方法(AIA)和常规方法测定碳酸盐岩储层含水饱和度的新见解

G. Hamada, Abdelrigeeb A. ElKadi, Abbas M. Alkhudafi
{"title":"利用人工智能方法(AIA)和常规方法测定碳酸盐岩储层含水饱和度的新见解","authors":"G. Hamada, Abdelrigeeb A. ElKadi, Abbas M. Alkhudafi","doi":"10.21608/jpme.2023.172751.1144","DOIUrl":null,"url":null,"abstract":"Carbonate reservoir rocks are considered heterogeneous and it is due to complex pores pattern caused by different diagenetic factors that are modifying the microstructures and matrix system. parameters and finally leading to significant petrophysical heterogeneity and anisotropy. Water saturation determination in carbonate reservoirs is crucial parameter to determine initial reserve of given an oil field. Water saturation determination using electrical measurements is based on Archie’s formula. Consequently, accuracy of Archie’s formula parameters affects seriously water saturation values. This work focuses on calculation of water saturation using Archie’s formula. Different determination techniques of Archie’s parameters such as conventional technique, CAPE technique and 3-D technique have been tested and then water saturation was calculated using Archie’s formula with the calculated parameters (a, m and n). This study introduced parallel self-organizing neural network (PSONN) algorithm predict Archie’s parameters and determination of water saturation. Results have shown that predicted Archie’s parameters (a, m and n) are highly accepted with statistical analysis lower statistical error and higher correlation coefficient than conventional determination techniques. The developed PSONN algorithm used big number of measurement points from core plugs of carbonate reservoir rocks. PSONN algorithm provided reliable water saturation values. We believe that PSONN can improve or may replace the conventional techniques to determine Archie’s parameters and determination of reserve estimate in carbonate reservoirs.","PeriodicalId":34437,"journal":{"name":"Journal of Petroleum and Mining Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Insights on Water Saturation Determination of Carbonate Reservoirs Using Artificial Intelligence Approach (AIA) and Conventional methods\",\"authors\":\"G. Hamada, Abdelrigeeb A. ElKadi, Abbas M. Alkhudafi\",\"doi\":\"10.21608/jpme.2023.172751.1144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbonate reservoir rocks are considered heterogeneous and it is due to complex pores pattern caused by different diagenetic factors that are modifying the microstructures and matrix system. parameters and finally leading to significant petrophysical heterogeneity and anisotropy. Water saturation determination in carbonate reservoirs is crucial parameter to determine initial reserve of given an oil field. Water saturation determination using electrical measurements is based on Archie’s formula. Consequently, accuracy of Archie’s formula parameters affects seriously water saturation values. This work focuses on calculation of water saturation using Archie’s formula. Different determination techniques of Archie’s parameters such as conventional technique, CAPE technique and 3-D technique have been tested and then water saturation was calculated using Archie’s formula with the calculated parameters (a, m and n). This study introduced parallel self-organizing neural network (PSONN) algorithm predict Archie’s parameters and determination of water saturation. Results have shown that predicted Archie’s parameters (a, m and n) are highly accepted with statistical analysis lower statistical error and higher correlation coefficient than conventional determination techniques. The developed PSONN algorithm used big number of measurement points from core plugs of carbonate reservoir rocks. PSONN algorithm provided reliable water saturation values. We believe that PSONN can improve or may replace the conventional techniques to determine Archie’s parameters and determination of reserve estimate in carbonate reservoirs.\",\"PeriodicalId\":34437,\"journal\":{\"name\":\"Journal of Petroleum and Mining Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum and Mining Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/jpme.2023.172751.1144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum and Mining Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/jpme.2023.172751.1144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

碳酸盐岩储层岩石被认为是非均质的,这是由于不同的成岩因素导致的复杂孔隙模式改变了微观结构和基质系统。参数,最终导致显著的岩石物理非均质性和各向异性。碳酸盐岩储层含水饱和度的确定是确定给定油田初始储量的关键参数。使用电学测量法测定水饱和度是基于Archie公式。因此,阿尔奇公式参数的准确性严重影响含水饱和度值。本文主要研究利用阿尔奇公式计算含水饱和度。对传统技术、CAPE技术和三维技术等不同的阿尔奇参数测定技术进行了试验,并用阿尔奇公式计算了含水饱和度。本研究引入了并行自组织神经网络(PSONN)算法预测阿尔奇参数和确定含水饱和度。结果表明,预测的Archie参数(a、m和n)是高度可接受的,与传统的确定技术相比,统计分析具有更低的统计误差和更高的相关系数。所开发的PSONN算法使用了大量来自碳酸盐岩储层岩心塞的测量点。PSONN算法提供了可靠的含水饱和度值。我们认为PSONN可以改进或可能取代传统的碳酸盐岩储层Archie参数确定和储量估算技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Insights on Water Saturation Determination of Carbonate Reservoirs Using Artificial Intelligence Approach (AIA) and Conventional methods
Carbonate reservoir rocks are considered heterogeneous and it is due to complex pores pattern caused by different diagenetic factors that are modifying the microstructures and matrix system. parameters and finally leading to significant petrophysical heterogeneity and anisotropy. Water saturation determination in carbonate reservoirs is crucial parameter to determine initial reserve of given an oil field. Water saturation determination using electrical measurements is based on Archie’s formula. Consequently, accuracy of Archie’s formula parameters affects seriously water saturation values. This work focuses on calculation of water saturation using Archie’s formula. Different determination techniques of Archie’s parameters such as conventional technique, CAPE technique and 3-D technique have been tested and then water saturation was calculated using Archie’s formula with the calculated parameters (a, m and n). This study introduced parallel self-organizing neural network (PSONN) algorithm predict Archie’s parameters and determination of water saturation. Results have shown that predicted Archie’s parameters (a, m and n) are highly accepted with statistical analysis lower statistical error and higher correlation coefficient than conventional determination techniques. The developed PSONN algorithm used big number of measurement points from core plugs of carbonate reservoir rocks. PSONN algorithm provided reliable water saturation values. We believe that PSONN can improve or may replace the conventional techniques to determine Archie’s parameters and determination of reserve estimate in carbonate reservoirs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
8
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信