与余切束相关联的非分裂超流形

Q3 Mathematics
A. Onishchik
{"title":"与余切束相关联的非分裂超流形","authors":"A. Onishchik","doi":"10.46298/cm.9613","DOIUrl":null,"url":null,"abstract":"Here, I study the problem of classification of non-split supermanifolds\nhaving as retract the split supermanifold $(M,\\Omega)$, where $\\Omega$ is the\nsheaf of holomorphic forms on a given complex manifold $M$ of dimension $> 1$.\nI propose a general construction associating with any $d$-closed $(1,1)$-form\n$\\omega$ on $M$ a supermanifold with retract $(M,\\Omega)$ which is non-split\nwhenever the Dolbeault class of $\\omega$ is non-zero. In particular, this gives\na non-empty family of non-split supermanifolds for any flag manifold $M\\ne\n\\mathbb{CP}^1$. In the case where $M$ is an irreducible compact Hermitian\nsymmetric space, I get a complete classification of non-split supermanifolds\nwith retract $(M,\\Omega)$. For each of these supermanifolds, the 0- and\n1-cohomology with values in the tangent sheaf are calculated. As an example, I\nstudy the $\\Pi$-symmetric super-Grassmannians introduced by Yu. Manin.","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Non-split supermanifolds associated with the cotangent bundle\",\"authors\":\"A. Onishchik\",\"doi\":\"10.46298/cm.9613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, I study the problem of classification of non-split supermanifolds\\nhaving as retract the split supermanifold $(M,\\\\Omega)$, where $\\\\Omega$ is the\\nsheaf of holomorphic forms on a given complex manifold $M$ of dimension $> 1$.\\nI propose a general construction associating with any $d$-closed $(1,1)$-form\\n$\\\\omega$ on $M$ a supermanifold with retract $(M,\\\\Omega)$ which is non-split\\nwhenever the Dolbeault class of $\\\\omega$ is non-zero. In particular, this gives\\na non-empty family of non-split supermanifolds for any flag manifold $M\\\\ne\\n\\\\mathbb{CP}^1$. In the case where $M$ is an irreducible compact Hermitian\\nsymmetric space, I get a complete classification of non-split supermanifolds\\nwith retract $(M,\\\\Omega)$. For each of these supermanifolds, the 0- and\\n1-cohomology with values in the tangent sheaf are calculated. As an example, I\\nstudy the $\\\\Pi$-symmetric super-Grassmannians introduced by Yu. Manin.\",\"PeriodicalId\":37836,\"journal\":{\"name\":\"Communications in Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/cm.9613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.9613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

摘要

在这里,我研究了将非分裂的超级流形剃刮分类为收回分裂的超级分形$(M,\Omega)$的问题,其中$\Omega$是维数$>1$的给定复流形$M$上的全纯形式的heaf。我提出了一个与$M$的具有收缩$(M,\Omega)$的超流形上的任何$d$-闭合$(1,1)$-形式$\Omega$相关联的一般构造,只要$\Omega的Dolbeault类为非零,它就不可分裂。特别地,这给出了任何标志流形$M\ne\mathbb{CP}^1$的非分裂超模的非空族。在$M$是一个不可约紧致Hermitian对称空间的情况下,我得到了具有收缩$(M,\Omega)$的非分裂超模的完全分类。对于这些超流形中的每一个,都会计算出在切鞘中具有值的0和1上同调。作为一个例子,我研究了俞提出的$\Pi$对称的超Grassmann。马宁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-split supermanifolds associated with the cotangent bundle
Here, I study the problem of classification of non-split supermanifolds having as retract the split supermanifold $(M,\Omega)$, where $\Omega$ is the sheaf of holomorphic forms on a given complex manifold $M$ of dimension $> 1$. I propose a general construction associating with any $d$-closed $(1,1)$-form $\omega$ on $M$ a supermanifold with retract $(M,\Omega)$ which is non-split whenever the Dolbeault class of $\omega$ is non-zero. In particular, this gives a non-empty family of non-split supermanifolds for any flag manifold $M\ne \mathbb{CP}^1$. In the case where $M$ is an irreducible compact Hermitian symmetric space, I get a complete classification of non-split supermanifolds with retract $(M,\Omega)$. For each of these supermanifolds, the 0- and 1-cohomology with values in the tangent sheaf are calculated. As an example, I study the $\Pi$-symmetric super-Grassmannians introduced by Yu. Manin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematics
Communications in Mathematics Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
26
审稿时长
45 weeks
期刊介绍: Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信