动力学SIR方程和粒子极限

IF 0.6 4区 数学 Q3 MATHEMATICS
A. Ciallella, M. Pulvirenti, S. Simonella
{"title":"动力学SIR方程和粒子极限","authors":"A. Ciallella, M. Pulvirenti, S. Simonella","doi":"10.4171/RLM/937","DOIUrl":null,"url":null,"abstract":"We present and analyze two simple $N$-particle particle systems for the spread of an infection, respectively with binary and with multi-body interactions. We establish a convergence result, as $N \\to \\infty$, to a set of kinetic equations, providing a mathematical justification of related numerical schemes. We analyze rigorously the time asymptotics of these equations, and compare the models numerically.","PeriodicalId":54497,"journal":{"name":"Rendiconti Lincei-Matematica e Applicazioni","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Kinetic SIR equations and particle limits\",\"authors\":\"A. Ciallella, M. Pulvirenti, S. Simonella\",\"doi\":\"10.4171/RLM/937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present and analyze two simple $N$-particle particle systems for the spread of an infection, respectively with binary and with multi-body interactions. We establish a convergence result, as $N \\\\to \\\\infty$, to a set of kinetic equations, providing a mathematical justification of related numerical schemes. We analyze rigorously the time asymptotics of these equations, and compare the models numerically.\",\"PeriodicalId\":54497,\"journal\":{\"name\":\"Rendiconti Lincei-Matematica e Applicazioni\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti Lincei-Matematica e Applicazioni\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/RLM/937\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti Lincei-Matematica e Applicazioni","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/RLM/937","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

我们提出并分析了两个简单的$N$粒子-粒子系统,分别具有二元和多体相互作用,用于感染的传播。我们建立了一组动力学方程的收敛结果,即$N\to\infty$,为相关数值格式提供了数学依据。我们严格分析了这些方程的时间渐近性,并对模型进行了数值比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kinetic SIR equations and particle limits
We present and analyze two simple $N$-particle particle systems for the spread of an infection, respectively with binary and with multi-body interactions. We establish a convergence result, as $N \to \infty$, to a set of kinetic equations, providing a mathematical justification of related numerical schemes. We analyze rigorously the time asymptotics of these equations, and compare the models numerically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rendiconti Lincei-Matematica e Applicazioni
Rendiconti Lincei-Matematica e Applicazioni MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.30
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: The journal is dedicated to the publication of high-quality peer-reviewed surveys, research papers and preliminary announcements of important results from all fields of mathematics and its applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信