氨基甲酸铵对黄铜矿的强化硫化及其对浮选的影响

IF 1.3 4区 工程技术 Q4 CHEMISTRY, PHYSICAL
Ziang Wang, Dandan Wu, Jing Cao, Hui-fang Chen
{"title":"氨基甲酸铵对黄铜矿的强化硫化及其对浮选的影响","authors":"Ziang Wang, Dandan Wu, Jing Cao, Hui-fang Chen","doi":"10.37190/ppmp/168573","DOIUrl":null,"url":null,"abstract":"In this study, flotation experiments, zeta potential, XPS, AFM, SEM-EDS, and contact angle measurements were performed to study the influence of ammonium carbamate (CH6N2O2) on the sulfidation flotation of chrysocolla. The results of the sulfidation flotation experiments showed that the recovery of chrysocolla increased more than 40% on the optimal condition after adding ammonium carbamate. In addition, the zeta potential of samples with ammonium carbamate was clearly higher than ores for pH > 6, which was due to the complexation reaction between ammonium carbamate and copper ion on the surface of chrysocolla samples. The activity of copper adsorption has also been improved. Furthermore, the XPS data indicated that the content of Cu-S compounds on the mineral surface has been significantly enhanced after ammonium carbamate complex sulfidation. The chemical analysis of the solution led to the same conclusion. The AFM results showed that ammonium carbamate had a positive impact on the adsorption of minerals surface, and increased the flotation recovery. It can be deduced from the SEM-EDS analysis that the surface of chrysocolla better combined with S–, and more Cu-S components were generated on the surface, which led to 1.04% increase of S atomic concentration. Finally, the contact angle measurements showed that the water contact angle of chrysocolla after adding ammonium carbamate could reach 90.4°, which proved that the sulfidation improved the floatability of the chrysocolla sample.","PeriodicalId":49137,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced sulfidation of chrysocolla with ammonium carbamate and its effect on flotation\",\"authors\":\"Ziang Wang, Dandan Wu, Jing Cao, Hui-fang Chen\",\"doi\":\"10.37190/ppmp/168573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, flotation experiments, zeta potential, XPS, AFM, SEM-EDS, and contact angle measurements were performed to study the influence of ammonium carbamate (CH6N2O2) on the sulfidation flotation of chrysocolla. The results of the sulfidation flotation experiments showed that the recovery of chrysocolla increased more than 40% on the optimal condition after adding ammonium carbamate. In addition, the zeta potential of samples with ammonium carbamate was clearly higher than ores for pH > 6, which was due to the complexation reaction between ammonium carbamate and copper ion on the surface of chrysocolla samples. The activity of copper adsorption has also been improved. Furthermore, the XPS data indicated that the content of Cu-S compounds on the mineral surface has been significantly enhanced after ammonium carbamate complex sulfidation. The chemical analysis of the solution led to the same conclusion. The AFM results showed that ammonium carbamate had a positive impact on the adsorption of minerals surface, and increased the flotation recovery. It can be deduced from the SEM-EDS analysis that the surface of chrysocolla better combined with S–, and more Cu-S components were generated on the surface, which led to 1.04% increase of S atomic concentration. Finally, the contact angle measurements showed that the water contact angle of chrysocolla after adding ammonium carbamate could reach 90.4°, which proved that the sulfidation improved the floatability of the chrysocolla sample.\",\"PeriodicalId\":49137,\"journal\":{\"name\":\"Physicochemical Problems of Mineral Processing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physicochemical Problems of Mineral Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.37190/ppmp/168573\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physicochemical Problems of Mineral Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.37190/ppmp/168573","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过浮选实验、zeta电位、XPS、AFM、SEM-EDS和接触角测量,研究了氨基甲酸铵(CH6N2O2)对黄铜矿硫化浮选的影响。硫化浮选试验结果表明,在最佳条件下,添加氨基甲酸铵后,黄钻的回收率提高了40%以上。另外,在pH值为bbbb6时,氨基甲酸铵样品的zeta电位明显高于矿石,这是由于氨基甲酸铵与铜离子在黄铜矿样品表面发生了络合反应。对铜的吸附活性也有所提高。此外,XPS数据表明,氨基甲酸铵配合物硫化后,矿物表面Cu-S化合物的含量显著增加。对溶液的化学分析得出了同样的结论。AFM结果表明,氨基甲酸铵对矿物表面吸附有积极影响,提高了浮选回收率。SEM-EDS分析可知,黄铜矿表面与S -结合较好,表面产生更多Cu-S组分,导致S原子浓度增加1.04%。最后,接触角测量表明,加入氨基甲酸铵后的沸石的水接触角可达90.4°,证明了硫化作用改善了沸石样品的可浮性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced sulfidation of chrysocolla with ammonium carbamate and its effect on flotation
In this study, flotation experiments, zeta potential, XPS, AFM, SEM-EDS, and contact angle measurements were performed to study the influence of ammonium carbamate (CH6N2O2) on the sulfidation flotation of chrysocolla. The results of the sulfidation flotation experiments showed that the recovery of chrysocolla increased more than 40% on the optimal condition after adding ammonium carbamate. In addition, the zeta potential of samples with ammonium carbamate was clearly higher than ores for pH > 6, which was due to the complexation reaction between ammonium carbamate and copper ion on the surface of chrysocolla samples. The activity of copper adsorption has also been improved. Furthermore, the XPS data indicated that the content of Cu-S compounds on the mineral surface has been significantly enhanced after ammonium carbamate complex sulfidation. The chemical analysis of the solution led to the same conclusion. The AFM results showed that ammonium carbamate had a positive impact on the adsorption of minerals surface, and increased the flotation recovery. It can be deduced from the SEM-EDS analysis that the surface of chrysocolla better combined with S–, and more Cu-S components were generated on the surface, which led to 1.04% increase of S atomic concentration. Finally, the contact angle measurements showed that the water contact angle of chrysocolla after adding ammonium carbamate could reach 90.4°, which proved that the sulfidation improved the floatability of the chrysocolla sample.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physicochemical Problems of Mineral Processing
Physicochemical Problems of Mineral Processing CHEMISTRY, PHYSICAL-MINING & MINERAL PROCESSING
自引率
6.70%
发文量
99
期刊介绍: Physicochemical Problems of Mineral Processing is an international, open access journal which covers theoretical approaches and their practical applications in all aspects of mineral processing and extractive metallurgy. Criteria for publication in the Physicochemical Problems of Mineral Processing journal are novelty, quality and current interest. Manuscripts which only make routine use of minor extensions to well established methodologies are not appropriate for the journal. Topics of interest Analytical techniques and applied mineralogy Computer applications Comminution, classification and sorting Froth flotation Solid-liquid separation Gravity concentration Magnetic and electric separation Hydro and biohydrometallurgy Extractive metallurgy Recycling and mineral wastes Environmental aspects of mineral processing and other mineral processing related subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信