{"title":"关于张量乘积von Neumann代数的中心序列代数","authors":"Y. Hashiba","doi":"10.4171/prims/58-2-6","DOIUrl":null,"url":null,"abstract":"We show that when $M,N_{1},N_{2}$ are tracial von Neumann algebras with $M'\\cap M^{\\omega}$ abelian, $M'\\cap(M\\bar{\\otimes}N_{1})^{\\omega}$ and $M'\\cap(M\\bar{\\otimes}N_{2})^{\\omega}$ commute in $(M\\bar{\\otimes}N_{1}\\bar{\\otimes}N_{2})^{\\omega}$. As a consequence, we obtain information on McDuff decompositions of $\\rm{II}_{1}$ factors of the form $M\\bar{\\otimes}N$, where $M$ is a non-McDuff factor.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Central Sequence Algebras of Tensor Product von Neumann Algebras\",\"authors\":\"Y. Hashiba\",\"doi\":\"10.4171/prims/58-2-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that when $M,N_{1},N_{2}$ are tracial von Neumann algebras with $M'\\\\cap M^{\\\\omega}$ abelian, $M'\\\\cap(M\\\\bar{\\\\otimes}N_{1})^{\\\\omega}$ and $M'\\\\cap(M\\\\bar{\\\\otimes}N_{2})^{\\\\omega}$ commute in $(M\\\\bar{\\\\otimes}N_{1}\\\\bar{\\\\otimes}N_{2})^{\\\\omega}$. As a consequence, we obtain information on McDuff decompositions of $\\\\rm{II}_{1}$ factors of the form $M\\\\bar{\\\\otimes}N$, where $M$ is a non-McDuff factor.\",\"PeriodicalId\":54528,\"journal\":{\"name\":\"Publications of the Research Institute for Mathematical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Research Institute for Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/prims/58-2-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/prims/58-2-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On Central Sequence Algebras of Tensor Product von Neumann Algebras
We show that when $M,N_{1},N_{2}$ are tracial von Neumann algebras with $M'\cap M^{\omega}$ abelian, $M'\cap(M\bar{\otimes}N_{1})^{\omega}$ and $M'\cap(M\bar{\otimes}N_{2})^{\omega}$ commute in $(M\bar{\otimes}N_{1}\bar{\otimes}N_{2})^{\omega}$. As a consequence, we obtain information on McDuff decompositions of $\rm{II}_{1}$ factors of the form $M\bar{\otimes}N$, where $M$ is a non-McDuff factor.
期刊介绍:
The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.