{"title":"聚羟基烷酸酯(PHA)生物聚酯——可持续发展和增长的循环材料","authors":"M. Koller, A. Mukherjee","doi":"10.15255/cabeq.2022.2124","DOIUrl":null,"url":null,"abstract":"Achieving circularity in materials requires fundamental changes in the polymers we use today and the way they are produced. Functional polymeric materials from renewable feedstocks that do not conflict with food and animal feed, and their renewal through biodegradation under diverse environmental conditions as the desired end-of-life option indeed constitute a paradigm shift for today’s plastics industry. Considering the ever-in-creasing environmental problems associated with the disposal or incineration of fossil plastics, the increasing microplastic formation, food contamination, and rising atmospheric CO 2 concentrations, have made it clear that the time is ripe for alternative, inno-vative, and sustainable polymers with plastic-like properties. In this nexus, the present review shines new light on the benefits of biobased and, at the same time, biodegradable microbial polyhydroxyalkanoate (PHA) biopolyesters. Special emphasis is dedicated to carbon recyclability through biodegradability and compostability of these fascinating natural materials, which are slowly but surely being commercialized as replacement for fossil plastics that are produced and disposed of in multi-million-ton scale annually, resulting in a growing environmental threat. This review highlights that end-of-life options of PHA are analogous or even superior to another well-known polymer from nature, cellulose, while PHA offer the additional attributes of plastics in use with tailor-made properties. Finally, the review demonstrates how PHA biopolyesters can contribute to reaching many of the heavily discussed and desired UN Sustainable Development Goals.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Polyhydroxyalkanoate (PHA) Bio-polyesters – Circular Materials for Sustainable Development and Growth\",\"authors\":\"M. Koller, A. Mukherjee\",\"doi\":\"10.15255/cabeq.2022.2124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving circularity in materials requires fundamental changes in the polymers we use today and the way they are produced. Functional polymeric materials from renewable feedstocks that do not conflict with food and animal feed, and their renewal through biodegradation under diverse environmental conditions as the desired end-of-life option indeed constitute a paradigm shift for today’s plastics industry. Considering the ever-in-creasing environmental problems associated with the disposal or incineration of fossil plastics, the increasing microplastic formation, food contamination, and rising atmospheric CO 2 concentrations, have made it clear that the time is ripe for alternative, inno-vative, and sustainable polymers with plastic-like properties. In this nexus, the present review shines new light on the benefits of biobased and, at the same time, biodegradable microbial polyhydroxyalkanoate (PHA) biopolyesters. Special emphasis is dedicated to carbon recyclability through biodegradability and compostability of these fascinating natural materials, which are slowly but surely being commercialized as replacement for fossil plastics that are produced and disposed of in multi-million-ton scale annually, resulting in a growing environmental threat. This review highlights that end-of-life options of PHA are analogous or even superior to another well-known polymer from nature, cellulose, while PHA offer the additional attributes of plastics in use with tailor-made properties. Finally, the review demonstrates how PHA biopolyesters can contribute to reaching many of the heavily discussed and desired UN Sustainable Development Goals.\",\"PeriodicalId\":9765,\"journal\":{\"name\":\"Chemical and Biochemical Engineering Quarterly\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Biochemical Engineering Quarterly\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.15255/cabeq.2022.2124\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biochemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15255/cabeq.2022.2124","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Polyhydroxyalkanoate (PHA) Bio-polyesters – Circular Materials for Sustainable Development and Growth
Achieving circularity in materials requires fundamental changes in the polymers we use today and the way they are produced. Functional polymeric materials from renewable feedstocks that do not conflict with food and animal feed, and their renewal through biodegradation under diverse environmental conditions as the desired end-of-life option indeed constitute a paradigm shift for today’s plastics industry. Considering the ever-in-creasing environmental problems associated with the disposal or incineration of fossil plastics, the increasing microplastic formation, food contamination, and rising atmospheric CO 2 concentrations, have made it clear that the time is ripe for alternative, inno-vative, and sustainable polymers with plastic-like properties. In this nexus, the present review shines new light on the benefits of biobased and, at the same time, biodegradable microbial polyhydroxyalkanoate (PHA) biopolyesters. Special emphasis is dedicated to carbon recyclability through biodegradability and compostability of these fascinating natural materials, which are slowly but surely being commercialized as replacement for fossil plastics that are produced and disposed of in multi-million-ton scale annually, resulting in a growing environmental threat. This review highlights that end-of-life options of PHA are analogous or even superior to another well-known polymer from nature, cellulose, while PHA offer the additional attributes of plastics in use with tailor-made properties. Finally, the review demonstrates how PHA biopolyesters can contribute to reaching many of the heavily discussed and desired UN Sustainable Development Goals.
期刊介绍:
The journal provides an international forum for presentation of original papers, reviews and discussions on the latest developments in chemical and biochemical engineering. The scope of the journal is wide and no limitation except relevance to chemical and biochemical engineering is required.
The criteria for the acceptance of papers are originality, quality of work and clarity of style. All papers are subject to reviewing by at least two international experts (blind peer review).
The language of the journal is English. Final versions of the manuscripts are subject to metric (SI units and IUPAC recommendations) and English language reviewing.
Editor and Editorial board make the final decision about acceptance of a manuscript.
Page charges are excluded.