液晶折叠双带屏蔽共面波导的76-81 GHz可扩展相移研究

Q2 Computer Science
Jinfeng Li
{"title":"液晶折叠双带屏蔽共面波导的76-81 GHz可扩展相移研究","authors":"Jinfeng Li","doi":"10.33166/aetic.2021.04.002","DOIUrl":null,"url":null,"abstract":"Unconventional folded shielded coplanar waveguide (FS-CPW) has yet to be fully investigated for tunable dielectrics-based applications. This work formulates designs of FS-CPW based on liquid crystals (LC) for electrically controlled 0-360˚ phase shifters, featuring a minimally redundant approach for reducing the LC volume and hence the costs for mass production. The design exhibits a few conceptual features that make it stand apart from others, noteworthy, the dual-strip structure with a simplified enclosure engraved that enables LC volume sharing between adjacent core lines. Insertion loss reduction by 0.77 dB and LC volume reduction by 1.62% per device are reported at 77 GHz, as compared with those of the conventional single-strip configuration. Based on the proof-of-concept results obtained for the novel dual-strip FS-CPW proposed, this work provides a springboard for follow-up investible propositions that will underpin the development of a phased array demonstrator.","PeriodicalId":36440,"journal":{"name":"Annals of Emerging Technologies in Computing","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards 76-81 GHz Scalable Phase Shifting by Folded Dual-strip Shielded Coplanar Waveguide with Liquid Crystals\",\"authors\":\"Jinfeng Li\",\"doi\":\"10.33166/aetic.2021.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unconventional folded shielded coplanar waveguide (FS-CPW) has yet to be fully investigated for tunable dielectrics-based applications. This work formulates designs of FS-CPW based on liquid crystals (LC) for electrically controlled 0-360˚ phase shifters, featuring a minimally redundant approach for reducing the LC volume and hence the costs for mass production. The design exhibits a few conceptual features that make it stand apart from others, noteworthy, the dual-strip structure with a simplified enclosure engraved that enables LC volume sharing between adjacent core lines. Insertion loss reduction by 0.77 dB and LC volume reduction by 1.62% per device are reported at 77 GHz, as compared with those of the conventional single-strip configuration. Based on the proof-of-concept results obtained for the novel dual-strip FS-CPW proposed, this work provides a springboard for follow-up investible propositions that will underpin the development of a phased array demonstrator.\",\"PeriodicalId\":36440,\"journal\":{\"name\":\"Annals of Emerging Technologies in Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Emerging Technologies in Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33166/aetic.2021.04.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Emerging Technologies in Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33166/aetic.2021.04.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

摘要

非常规折叠屏蔽共面波导(FS-CPW)在可调谐介质中的应用尚未得到充分的研究。本工作制定了基于液晶(LC)的FS-CPW的设计,用于电控0-360˚移相器,具有最小化冗余的方法来减少LC体积,从而减少批量生产的成本。该设计展示了一些概念特征,使其脱颖而出,值得注意的是,双条形结构与简化的外壳雕刻,使相邻核心线之间的LC体积共享。与传统的单带配置相比,在77 GHz下每个器件的插入损耗减少0.77 dB, LC体积减少1.62%。基于所提出的新型双带FS-CPW的概念验证结果,本工作为后续可投资的命题提供了跳板,这些命题将支持相控阵演示器的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards 76-81 GHz Scalable Phase Shifting by Folded Dual-strip Shielded Coplanar Waveguide with Liquid Crystals
Unconventional folded shielded coplanar waveguide (FS-CPW) has yet to be fully investigated for tunable dielectrics-based applications. This work formulates designs of FS-CPW based on liquid crystals (LC) for electrically controlled 0-360˚ phase shifters, featuring a minimally redundant approach for reducing the LC volume and hence the costs for mass production. The design exhibits a few conceptual features that make it stand apart from others, noteworthy, the dual-strip structure with a simplified enclosure engraved that enables LC volume sharing between adjacent core lines. Insertion loss reduction by 0.77 dB and LC volume reduction by 1.62% per device are reported at 77 GHz, as compared with those of the conventional single-strip configuration. Based on the proof-of-concept results obtained for the novel dual-strip FS-CPW proposed, this work provides a springboard for follow-up investible propositions that will underpin the development of a phased array demonstrator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Emerging Technologies in Computing
Annals of Emerging Technologies in Computing Computer Science-Computer Science (all)
CiteScore
3.50
自引率
0.00%
发文量
26
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信