高光谱图像压缩的压缩感知方法

K. Gunasheela, H. S. Prasantha
{"title":"高光谱图像压缩的压缩感知方法","authors":"K. Gunasheela, H. S. Prasantha","doi":"10.21917/ijivp.2018.0261","DOIUrl":null,"url":null,"abstract":"Hyperspectral image (HSI) processing is one of the key processes in satellite imaging applications. Hyperspectral imaging spectrometers collect huge volumes of data since the image is captured across different wavelength bands in the electromagnetic spectrum. As a result, compression of hyperspectral images is one of the active area in research community from many years. The research work proposes a new compressive sensing based approach for the compression of hyperspectral images called SHSIR (Sparsification of hyperspectral image and reconstruction). The algorithm computes the coefficients of fractional abundance map in matrix setup, which is used to reconstruct the hyperspectral image. To optimize the problem with non-smooth term existence along with large dimensionality, Bregman iterations method of multipliers is used, which converts the difficult optimization problem into simpler cyclic sequence problem. Experimental result demonstrates the supremacy of the proposed method over other existing techniques.","PeriodicalId":30615,"journal":{"name":"ICTACT Journal on Image and Video Processing","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COMPRESSIVE SENSING APPROACH TO HYPERSPECTRAL IMAGE COMPRESSION\",\"authors\":\"K. Gunasheela, H. S. Prasantha\",\"doi\":\"10.21917/ijivp.2018.0261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral image (HSI) processing is one of the key processes in satellite imaging applications. Hyperspectral imaging spectrometers collect huge volumes of data since the image is captured across different wavelength bands in the electromagnetic spectrum. As a result, compression of hyperspectral images is one of the active area in research community from many years. The research work proposes a new compressive sensing based approach for the compression of hyperspectral images called SHSIR (Sparsification of hyperspectral image and reconstruction). The algorithm computes the coefficients of fractional abundance map in matrix setup, which is used to reconstruct the hyperspectral image. To optimize the problem with non-smooth term existence along with large dimensionality, Bregman iterations method of multipliers is used, which converts the difficult optimization problem into simpler cyclic sequence problem. Experimental result demonstrates the supremacy of the proposed method over other existing techniques.\",\"PeriodicalId\":30615,\"journal\":{\"name\":\"ICTACT Journal on Image and Video Processing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICTACT Journal on Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21917/ijivp.2018.0261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICTACT Journal on Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21917/ijivp.2018.0261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高光谱图像处理是卫星成像应用的关键过程之一。高光谱成像光谱仪收集了大量的数据,因为图像是在电磁频谱的不同波长波段上捕获的。因此,高光谱图像的压缩是多年来研究的热点之一。本研究提出了一种基于压缩感知的高光谱图像压缩方法SHSIR (Sparsification of hyperspectral image and reconstruction)。该算法在矩阵设置中计算分数丰度图系数,用于高光谱图像的重建。针对非光滑项存在且维数较大的优化问题,采用乘法器的Bregman迭代法,将复杂的优化问题转化为简单的循环序列问题。实验结果表明,该方法优于其他现有技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COMPRESSIVE SENSING APPROACH TO HYPERSPECTRAL IMAGE COMPRESSION
Hyperspectral image (HSI) processing is one of the key processes in satellite imaging applications. Hyperspectral imaging spectrometers collect huge volumes of data since the image is captured across different wavelength bands in the electromagnetic spectrum. As a result, compression of hyperspectral images is one of the active area in research community from many years. The research work proposes a new compressive sensing based approach for the compression of hyperspectral images called SHSIR (Sparsification of hyperspectral image and reconstruction). The algorithm computes the coefficients of fractional abundance map in matrix setup, which is used to reconstruct the hyperspectral image. To optimize the problem with non-smooth term existence along with large dimensionality, Bregman iterations method of multipliers is used, which converts the difficult optimization problem into simpler cyclic sequence problem. Experimental result demonstrates the supremacy of the proposed method over other existing techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信