{"title":"连通几何(n_k)配置几乎存在于所有n","authors":"G. Gévay, Leah Wrenn Berman, T. Pisanski","doi":"10.26493/2590-9770.1408.f90","DOIUrl":null,"url":null,"abstract":"In a series of papers and in his 2009 book on configurations Branko Grunbaum described a sequence of operations to produce new (n4) configurations from various input configurations. These operations were later called the “Grunbaum Incidence Calculus”. We generalize two of these operations to produce operations on arbitrary (nk) configurations. Using them, we show that for any k there exists an integer Nk such that for any n ≥ Nk there exists a geometric (nk) configuration. We use empirical results for k = 2, 3, 4, and some more detailed analysis to improve the upper bound for larger values of k.","PeriodicalId":36246,"journal":{"name":"Art of Discrete and Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Connected geometric (n_k) configurations exist for almost all n\",\"authors\":\"G. Gévay, Leah Wrenn Berman, T. Pisanski\",\"doi\":\"10.26493/2590-9770.1408.f90\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a series of papers and in his 2009 book on configurations Branko Grunbaum described a sequence of operations to produce new (n4) configurations from various input configurations. These operations were later called the “Grunbaum Incidence Calculus”. We generalize two of these operations to produce operations on arbitrary (nk) configurations. Using them, we show that for any k there exists an integer Nk such that for any n ≥ Nk there exists a geometric (nk) configuration. We use empirical results for k = 2, 3, 4, and some more detailed analysis to improve the upper bound for larger values of k.\",\"PeriodicalId\":36246,\"journal\":{\"name\":\"Art of Discrete and Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Art of Discrete and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/2590-9770.1408.f90\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art of Discrete and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1408.f90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Connected geometric (n_k) configurations exist for almost all n
In a series of papers and in his 2009 book on configurations Branko Grunbaum described a sequence of operations to produce new (n4) configurations from various input configurations. These operations were later called the “Grunbaum Incidence Calculus”. We generalize two of these operations to produce operations on arbitrary (nk) configurations. Using them, we show that for any k there exists an integer Nk such that for any n ≥ Nk there exists a geometric (nk) configuration. We use empirical results for k = 2, 3, 4, and some more detailed analysis to improve the upper bound for larger values of k.