连通几何(n_k)配置几乎存在于所有n

Q3 Mathematics
G. Gévay, Leah Wrenn Berman, T. Pisanski
{"title":"连通几何(n_k)配置几乎存在于所有n","authors":"G. Gévay, Leah Wrenn Berman, T. Pisanski","doi":"10.26493/2590-9770.1408.f90","DOIUrl":null,"url":null,"abstract":"In a series of papers and in his 2009 book on configurations Branko Grunbaum described a sequence of operations to produce new (n4) configurations from various input configurations. These operations were later called the “Grunbaum Incidence Calculus”. We generalize two of these operations to produce operations on arbitrary (nk) configurations. Using them, we show that for any k there exists an integer Nk such that for any n ≥ Nk there exists a geometric (nk) configuration. We use empirical results for k = 2, 3, 4, and some more detailed analysis to improve the upper bound for larger values of k.","PeriodicalId":36246,"journal":{"name":"Art of Discrete and Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Connected geometric (n_k) configurations exist for almost all n\",\"authors\":\"G. Gévay, Leah Wrenn Berman, T. Pisanski\",\"doi\":\"10.26493/2590-9770.1408.f90\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a series of papers and in his 2009 book on configurations Branko Grunbaum described a sequence of operations to produce new (n4) configurations from various input configurations. These operations were later called the “Grunbaum Incidence Calculus”. We generalize two of these operations to produce operations on arbitrary (nk) configurations. Using them, we show that for any k there exists an integer Nk such that for any n ≥ Nk there exists a geometric (nk) configuration. We use empirical results for k = 2, 3, 4, and some more detailed analysis to improve the upper bound for larger values of k.\",\"PeriodicalId\":36246,\"journal\":{\"name\":\"Art of Discrete and Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Art of Discrete and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/2590-9770.1408.f90\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art of Discrete and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1408.f90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

在一系列的论文和他2009年关于配置的书中,Branko Grunbaum描述了一系列从各种输入配置产生新(n4)配置的操作。这些运算后来被称为“格伦鲍姆关联演算”。我们将其中的两个操作推广到任意(nk)组态上。利用它们,我们证明了对于任意k存在一个整数Nk,使得对于任意n≥Nk存在一个几何构型(Nk)。我们使用k = 2,3,4的经验结果,以及一些更详细的分析来改进k较大值的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Connected geometric (n_k) configurations exist for almost all n
In a series of papers and in his 2009 book on configurations Branko Grunbaum described a sequence of operations to produce new (n4) configurations from various input configurations. These operations were later called the “Grunbaum Incidence Calculus”. We generalize two of these operations to produce operations on arbitrary (nk) configurations. Using them, we show that for any k there exists an integer Nk such that for any n ≥ Nk there exists a geometric (nk) configuration. We use empirical results for k = 2, 3, 4, and some more detailed analysis to improve the upper bound for larger values of k.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Art of Discrete and Applied Mathematics
Art of Discrete and Applied Mathematics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.90
自引率
0.00%
发文量
43
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信