{"title":"飞机增强碳复合材料扭转箱的设计","authors":"A. Bolshikh","doi":"10.46300/9104.2023.17.4","DOIUrl":null,"url":null,"abstract":"At the initial design stage, there is a problem of determining the thicknesses of the load-bearing elements of an aircraft structure made of composite materials. The paper presents the intelligent design of the composite caisson structural strength. Intelligent design is based on the finite element method. The task of optimization used the objective function of minimum mass and setting some constraints including no types of buckling al-lowed. In optimization, the parameter is the thickness of the element, which changes in the process of minimizing the objective function for elements made of PCM by an amount equal to the thickness of the package. The results show the strength margins of spar webs and rib webs of the caisson of vertical empennage torsion box satisfy the safety factor design.","PeriodicalId":39203,"journal":{"name":"International Journal of Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing of Aircraft Reinforced Carbon- Composite Torsion Boxes\",\"authors\":\"A. Bolshikh\",\"doi\":\"10.46300/9104.2023.17.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At the initial design stage, there is a problem of determining the thicknesses of the load-bearing elements of an aircraft structure made of composite materials. The paper presents the intelligent design of the composite caisson structural strength. Intelligent design is based on the finite element method. The task of optimization used the objective function of minimum mass and setting some constraints including no types of buckling al-lowed. In optimization, the parameter is the thickness of the element, which changes in the process of minimizing the objective function for elements made of PCM by an amount equal to the thickness of the package. The results show the strength margins of spar webs and rib webs of the caisson of vertical empennage torsion box satisfy the safety factor design.\",\"PeriodicalId\":39203,\"journal\":{\"name\":\"International Journal of Mechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46300/9104.2023.17.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/9104.2023.17.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Designing of Aircraft Reinforced Carbon- Composite Torsion Boxes
At the initial design stage, there is a problem of determining the thicknesses of the load-bearing elements of an aircraft structure made of composite materials. The paper presents the intelligent design of the composite caisson structural strength. Intelligent design is based on the finite element method. The task of optimization used the objective function of minimum mass and setting some constraints including no types of buckling al-lowed. In optimization, the parameter is the thickness of the element, which changes in the process of minimizing the objective function for elements made of PCM by an amount equal to the thickness of the package. The results show the strength margins of spar webs and rib webs of the caisson of vertical empennage torsion box satisfy the safety factor design.