抛物线希格斯束的反常滤过、希尔伯特格式和P=W猜想

IF 1.2 1区 数学 Q1 MATHEMATICS
Junliang Shen, Zili Zhang
{"title":"抛物线希格斯束的反常滤过、希尔伯特格式和P=W猜想","authors":"Junliang Shen, Zili Zhang","doi":"10.14231/AG-2021-014","DOIUrl":null,"url":null,"abstract":"We prove de Cataldo-Hausel-Migliorini's P=W conjecture in arbitrary rank for parabolic Higgs bundles labeled by the affine Dynkin diagrams $\\tilde{A}_0$, $\\tilde{D}_4$, $\\tilde{E}_6$, $\\tilde{E}_7$, and $\\tilde{E}_8$. Our proof relies on the study of the tautological classes on the Hilbert scheme of points on an elliptic surface with respect to the perverse filtration.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Perverse filtrations, Hilbert schemes, and the $P=W$ Conjecture for parabolic Higgs bundles\",\"authors\":\"Junliang Shen, Zili Zhang\",\"doi\":\"10.14231/AG-2021-014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove de Cataldo-Hausel-Migliorini's P=W conjecture in arbitrary rank for parabolic Higgs bundles labeled by the affine Dynkin diagrams $\\\\tilde{A}_0$, $\\\\tilde{D}_4$, $\\\\tilde{E}_6$, $\\\\tilde{E}_7$, and $\\\\tilde{E}_8$. Our proof relies on the study of the tautological classes on the Hilbert scheme of points on an elliptic surface with respect to the perverse filtration.\",\"PeriodicalId\":48564,\"journal\":{\"name\":\"Algebraic Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/AG-2021-014\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/AG-2021-014","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

我们证明了由仿射Dynkin图$\tilde标记的抛物型Higgs丛的任意秩的de Cataldo Hauser Migliorini的P=W猜想{A}_0$,$\波浪号{D}_4$,$\波浪号{E}_6$,$\波浪号{E}_7$和$\波浪号{E}_8$。我们的证明依赖于关于反常过滤的椭圆表面上的点的Hilbert格式上的重言类的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perverse filtrations, Hilbert schemes, and the $P=W$ Conjecture for parabolic Higgs bundles
We prove de Cataldo-Hausel-Migliorini's P=W conjecture in arbitrary rank for parabolic Higgs bundles labeled by the affine Dynkin diagrams $\tilde{A}_0$, $\tilde{D}_4$, $\tilde{E}_6$, $\tilde{E}_7$, and $\tilde{E}_8$. Our proof relies on the study of the tautological classes on the Hilbert scheme of points on an elliptic surface with respect to the perverse filtration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信