{"title":"平均场博弈系统:Carleman估计,Lipschitz稳定性和唯一性","authors":"M. Klibanov","doi":"10.1515/jiip-2023-0023","DOIUrl":null,"url":null,"abstract":"Abstract An overdetermination is introduced in an initial condition for the second order mean field games system (MFGS). This makes the resulting problem close to the classical ill-posed Cauchy problems for PDEs. Indeed, in such a problem an overdetermination in boundary conditions usually takes place. A Lipschitz stability estimate is obtained. This estimate implies uniqueness. A new Carleman estimate is derived. This latter estimate is called “quasi-Carleman estimate”, since it contains two test functions rather than a single one in conventional Carleman estimates. These two estimates play the key role. Carleman estimates were not applied to the MFGS prior to the recent work of Klibanov and Averboukh in [M. V. Klibanov and Y. Averboukh, Lipschitz stability estimate and uniqueness in the retrospective analysis for the mean field games system via two Carleman estimates, preprint 2023, https://arxiv.org/abs/2302.10709].","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"31 1","pages":"455 - 466"},"PeriodicalIF":0.9000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"The mean field games system: Carleman estimates, Lipschitz stability and uniqueness\",\"authors\":\"M. Klibanov\",\"doi\":\"10.1515/jiip-2023-0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract An overdetermination is introduced in an initial condition for the second order mean field games system (MFGS). This makes the resulting problem close to the classical ill-posed Cauchy problems for PDEs. Indeed, in such a problem an overdetermination in boundary conditions usually takes place. A Lipschitz stability estimate is obtained. This estimate implies uniqueness. A new Carleman estimate is derived. This latter estimate is called “quasi-Carleman estimate”, since it contains two test functions rather than a single one in conventional Carleman estimates. These two estimates play the key role. Carleman estimates were not applied to the MFGS prior to the recent work of Klibanov and Averboukh in [M. V. Klibanov and Y. Averboukh, Lipschitz stability estimate and uniqueness in the retrospective analysis for the mean field games system via two Carleman estimates, preprint 2023, https://arxiv.org/abs/2302.10709].\",\"PeriodicalId\":50171,\"journal\":{\"name\":\"Journal of Inverse and Ill-Posed Problems\",\"volume\":\"31 1\",\"pages\":\"455 - 466\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inverse and Ill-Posed Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jiip-2023-0023\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jiip-2023-0023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The mean field games system: Carleman estimates, Lipschitz stability and uniqueness
Abstract An overdetermination is introduced in an initial condition for the second order mean field games system (MFGS). This makes the resulting problem close to the classical ill-posed Cauchy problems for PDEs. Indeed, in such a problem an overdetermination in boundary conditions usually takes place. A Lipschitz stability estimate is obtained. This estimate implies uniqueness. A new Carleman estimate is derived. This latter estimate is called “quasi-Carleman estimate”, since it contains two test functions rather than a single one in conventional Carleman estimates. These two estimates play the key role. Carleman estimates were not applied to the MFGS prior to the recent work of Klibanov and Averboukh in [M. V. Klibanov and Y. Averboukh, Lipschitz stability estimate and uniqueness in the retrospective analysis for the mean field games system via two Carleman estimates, preprint 2023, https://arxiv.org/abs/2302.10709].
期刊介绍:
This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published.
Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest.
The following topics are covered:
Inverse problems
existence and uniqueness theorems
stability estimates
optimization and identification problems
numerical methods
Ill-posed problems
regularization theory
operator equations
integral geometry
Applications
inverse problems in geophysics, electrodynamics and acoustics
inverse problems in ecology
inverse and ill-posed problems in medicine
mathematical problems of tomography