Andrea Bucchi, Domenico De Tommasi, Giuseppe Puglisi, Giuseppe Saccomandi
{"title":"损伤作为材料相变","authors":"Andrea Bucchi, Domenico De Tommasi, Giuseppe Puglisi, Giuseppe Saccomandi","doi":"10.1007/s10659-023-10014-z","DOIUrl":null,"url":null,"abstract":"<div><p>We propose paradigmatic examples to show how material damage phenomena can be efficiently described as a solid-solid phase transition. Starting from the pioneering work of J.L. Ericksen (J. Elast. 5(3):191–201, 1975) and the extensions of R.L. Fosdick and other authors to three-dimensional non linear elasticity, we describe the insurgence of damage as a hard → soft transition between two material states (damage and undamaged) characterized by two different energy wells. We consider the two separate constitutive assumptions of a simple Neo-Hookean type damageable material and a more complex microstructure inspired damageable Gent type material with variable limit threshold of the first invariant. In both cases we study two different deformation shear classes, one homogeneous and the other one inhomogeneous and obtain fully analytic description of the system damage response under cyclic loading. The considered constitutive assumptions and deformation classes are aimed at attaining fully analytic descriptions. On the other hand, we remark that the proposed, Griffith type, variational approach of damage, based on two different energy density functions for the damaged and undamaged material phases, and a resulting non (rank-one) convex energy, can be extended to systems with more complex energy functions, possibly with a larger number of wells representing an increasing degree of damage.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"154 1-4","pages":"325 - 344"},"PeriodicalIF":1.8000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Damage as a Material Phase Transition\",\"authors\":\"Andrea Bucchi, Domenico De Tommasi, Giuseppe Puglisi, Giuseppe Saccomandi\",\"doi\":\"10.1007/s10659-023-10014-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose paradigmatic examples to show how material damage phenomena can be efficiently described as a solid-solid phase transition. Starting from the pioneering work of J.L. Ericksen (J. Elast. 5(3):191–201, 1975) and the extensions of R.L. Fosdick and other authors to three-dimensional non linear elasticity, we describe the insurgence of damage as a hard → soft transition between two material states (damage and undamaged) characterized by two different energy wells. We consider the two separate constitutive assumptions of a simple Neo-Hookean type damageable material and a more complex microstructure inspired damageable Gent type material with variable limit threshold of the first invariant. In both cases we study two different deformation shear classes, one homogeneous and the other one inhomogeneous and obtain fully analytic description of the system damage response under cyclic loading. The considered constitutive assumptions and deformation classes are aimed at attaining fully analytic descriptions. On the other hand, we remark that the proposed, Griffith type, variational approach of damage, based on two different energy density functions for the damaged and undamaged material phases, and a resulting non (rank-one) convex energy, can be extended to systems with more complex energy functions, possibly with a larger number of wells representing an increasing degree of damage.</p></div>\",\"PeriodicalId\":624,\"journal\":{\"name\":\"Journal of Elasticity\",\"volume\":\"154 1-4\",\"pages\":\"325 - 344\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Elasticity\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10659-023-10014-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-023-10014-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
We propose paradigmatic examples to show how material damage phenomena can be efficiently described as a solid-solid phase transition. Starting from the pioneering work of J.L. Ericksen (J. Elast. 5(3):191–201, 1975) and the extensions of R.L. Fosdick and other authors to three-dimensional non linear elasticity, we describe the insurgence of damage as a hard → soft transition between two material states (damage and undamaged) characterized by two different energy wells. We consider the two separate constitutive assumptions of a simple Neo-Hookean type damageable material and a more complex microstructure inspired damageable Gent type material with variable limit threshold of the first invariant. In both cases we study two different deformation shear classes, one homogeneous and the other one inhomogeneous and obtain fully analytic description of the system damage response under cyclic loading. The considered constitutive assumptions and deformation classes are aimed at attaining fully analytic descriptions. On the other hand, we remark that the proposed, Griffith type, variational approach of damage, based on two different energy density functions for the damaged and undamaged material phases, and a resulting non (rank-one) convex energy, can be extended to systems with more complex energy functions, possibly with a larger number of wells representing an increasing degree of damage.
期刊介绍:
The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.