基于几何假设隐含的最优正则性,I:切线束上的连接

IF 0.6 Q4 MATHEMATICS, APPLIED
Moritz Reintjes, B. Temple
{"title":"基于几何假设隐含的最优正则性,I:切线束上的连接","authors":"Moritz Reintjes, B. Temple","doi":"10.4310/maa.2022.v29.n4.a1","DOIUrl":null,"url":null,"abstract":"We resolve the problem of optimal regularity and Uhlenbeck compactness for affine connections in General Relativity and Mathematical Physics. First, we prove that any affine connection $\\Gamma$, with components $\\Gamma \\in L^{2p}$ and components of its Riemann curvature ${\\rm Riem}(\\Gamma)$ in $L^p$, in some coordinate system, can be smoothed by coordinate transformation to optimal regularity, $\\Gamma \\in W^{1,p}$ (one derivative smoother than the curvature), $p>\\max\\{n/2,2\\}$, dimension $n\\geq 2$. For Lorentzian metrics in General Relativity this implies that shock wave solutions of the Einstein-Euler equations are non-singular -- geodesic curves, locally inertial coordinates and the Newtonian limit, all exist in a classical sense, and the Einstein equations hold in the strong sense. The proof is based on an $L^p$ existence theory for the Regularity Transformation (RT) equations, a system of elliptic partial differential equations (introduced by the authors) which determine the Jacobians of the regularizing coordinate transformations. Secondly, this existence theory gives the first extension of Uhlenbeck compactness from Riemannian metrics, to general affine connections bounded in $L^\\infty$, with curvature in $L^{p}$, $p>n$, including semi-Riemannian metrics, and Lorentzian metric connections of relativistic Physics. We interpret this as a ``geometric'' improvement of the generalized Div-Curl Lemma. Our theory shows that Uhlenbeck compactness and optimal regularity are pure logical consequences of the rule which defines how connections transform from one coordinate system to another -- what one could take to be the ``starting assumption of geometry''.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the optimal regularity implied by the assumptions of geometry, I: connections on tangent bundles\",\"authors\":\"Moritz Reintjes, B. Temple\",\"doi\":\"10.4310/maa.2022.v29.n4.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We resolve the problem of optimal regularity and Uhlenbeck compactness for affine connections in General Relativity and Mathematical Physics. First, we prove that any affine connection $\\\\Gamma$, with components $\\\\Gamma \\\\in L^{2p}$ and components of its Riemann curvature ${\\\\rm Riem}(\\\\Gamma)$ in $L^p$, in some coordinate system, can be smoothed by coordinate transformation to optimal regularity, $\\\\Gamma \\\\in W^{1,p}$ (one derivative smoother than the curvature), $p>\\\\max\\\\{n/2,2\\\\}$, dimension $n\\\\geq 2$. For Lorentzian metrics in General Relativity this implies that shock wave solutions of the Einstein-Euler equations are non-singular -- geodesic curves, locally inertial coordinates and the Newtonian limit, all exist in a classical sense, and the Einstein equations hold in the strong sense. The proof is based on an $L^p$ existence theory for the Regularity Transformation (RT) equations, a system of elliptic partial differential equations (introduced by the authors) which determine the Jacobians of the regularizing coordinate transformations. Secondly, this existence theory gives the first extension of Uhlenbeck compactness from Riemannian metrics, to general affine connections bounded in $L^\\\\infty$, with curvature in $L^{p}$, $p>n$, including semi-Riemannian metrics, and Lorentzian metric connections of relativistic Physics. We interpret this as a ``geometric'' improvement of the generalized Div-Curl Lemma. Our theory shows that Uhlenbeck compactness and optimal regularity are pure logical consequences of the rule which defines how connections transform from one coordinate system to another -- what one could take to be the ``starting assumption of geometry''.\",\"PeriodicalId\":18467,\"journal\":{\"name\":\"Methods and applications of analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and applications of analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/maa.2022.v29.n4.a1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/maa.2022.v29.n4.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

我们解决了广义相对论和数学物理中仿射连接的最优正则性和Uhlenbeck紧性问题。首先,我们证明了在某些坐标系中,任何仿射连接$\Gamma$,其L^{2p}$中的分量$\Gamma\和其黎曼曲率${\rm-Riem}(\Gamma)$在$L^p$中的组件,都可以通过坐标变换平滑到最优正则性,W^{1,p}$(比曲率更光滑的一个导数)中的$\Gamma\$p>\max\{n/2,2\}$,维数$n\geq2$。对于广义相对论中的洛伦兹度量,这意味着爱因斯坦-欧拉方程的冲击波解是非奇异的——测地曲线、局部惯性坐标和牛顿极限,都存在于经典意义上,爱因斯坦方程在强意义上成立。该证明基于正则变换(RT)方程的$L^p$存在性理论,正则变换是一个椭圆偏微分方程组(由作者介绍),它确定了正则化坐标变换的雅可比矩阵。其次,该存在论给出了Uhlenbeck紧性从黎曼度量到一般仿射连接的第一个推广,一般仿射连接以$L^\infty$为界,曲率在$L^{p}$,$p>n$,包括半黎曼度量和相对论物理的洛伦兹度量连接。我们将其解释为广义Div-Coll引理的“几何”改进。我们的理论表明,乌伦贝克紧性和最优正则性是该规则的纯逻辑结果,该规则定义了连接如何从一个坐标系转换到另一个坐标系统——可以将其视为“几何的起始假设”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the optimal regularity implied by the assumptions of geometry, I: connections on tangent bundles
We resolve the problem of optimal regularity and Uhlenbeck compactness for affine connections in General Relativity and Mathematical Physics. First, we prove that any affine connection $\Gamma$, with components $\Gamma \in L^{2p}$ and components of its Riemann curvature ${\rm Riem}(\Gamma)$ in $L^p$, in some coordinate system, can be smoothed by coordinate transformation to optimal regularity, $\Gamma \in W^{1,p}$ (one derivative smoother than the curvature), $p>\max\{n/2,2\}$, dimension $n\geq 2$. For Lorentzian metrics in General Relativity this implies that shock wave solutions of the Einstein-Euler equations are non-singular -- geodesic curves, locally inertial coordinates and the Newtonian limit, all exist in a classical sense, and the Einstein equations hold in the strong sense. The proof is based on an $L^p$ existence theory for the Regularity Transformation (RT) equations, a system of elliptic partial differential equations (introduced by the authors) which determine the Jacobians of the regularizing coordinate transformations. Secondly, this existence theory gives the first extension of Uhlenbeck compactness from Riemannian metrics, to general affine connections bounded in $L^\infty$, with curvature in $L^{p}$, $p>n$, including semi-Riemannian metrics, and Lorentzian metric connections of relativistic Physics. We interpret this as a ``geometric'' improvement of the generalized Div-Curl Lemma. Our theory shows that Uhlenbeck compactness and optimal regularity are pure logical consequences of the rule which defines how connections transform from one coordinate system to another -- what one could take to be the ``starting assumption of geometry''.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods and applications of analysis
Methods and applications of analysis MATHEMATICS, APPLIED-
自引率
33.30%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信