阿贝尔群中可分解集合的零和子集

IF 0.3 Q4 MATHEMATICS, APPLIED
T. Banakh, A. Ravsky
{"title":"阿贝尔群中可分解集合的零和子集","authors":"T. Banakh, A. Ravsky","doi":"10.12958/adm1494","DOIUrl":null,"url":null,"abstract":"A subset D of an abelian group is decomposable if ∅≠D⊂D+D. In the paper we give partial answers to an open problem asking whether every finite decomposable subset D of an abelian group contains a non-empty subset Z⊂D with ∑Z=0. For every n∈N we present a decomposable subset D of cardinality |D|=n in the cyclic group of order 2n−1 such that ∑D=0, but ∑T≠0 for any proper non-empty subset T⊂D. On the other hand, we prove that every decomposable subset D⊂R of cardinality |D|≤7 contains a non-empty subset T⊂D of cardinality |Z|≤12|D| with ∑Z=0. For every n∈N we present a subset D⊂Z of cardinality |D|=2n such that ∑Z=0 for some subset Z⊂D of cardinality |Z|=n and ∑T≠0 for any non-empty subset T⊂D of cardinality |T|<n=12|D|. Also we prove that every finite decomposable subset D of an Abelian group contains two non-empty subsets A,B such that ∑A+∑B=0.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Zero-sum subsets of decomposable sets in Abelian groups\",\"authors\":\"T. Banakh, A. Ravsky\",\"doi\":\"10.12958/adm1494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A subset D of an abelian group is decomposable if ∅≠D⊂D+D. In the paper we give partial answers to an open problem asking whether every finite decomposable subset D of an abelian group contains a non-empty subset Z⊂D with ∑Z=0. For every n∈N we present a decomposable subset D of cardinality |D|=n in the cyclic group of order 2n−1 such that ∑D=0, but ∑T≠0 for any proper non-empty subset T⊂D. On the other hand, we prove that every decomposable subset D⊂R of cardinality |D|≤7 contains a non-empty subset T⊂D of cardinality |Z|≤12|D| with ∑Z=0. For every n∈N we present a subset D⊂Z of cardinality |D|=2n such that ∑Z=0 for some subset Z⊂D of cardinality |Z|=n and ∑T≠0 for any non-empty subset T⊂D of cardinality |T|<n=12|D|. Also we prove that every finite decomposable subset D of an Abelian group contains two non-empty subsets A,B such that ∑A+∑B=0.\",\"PeriodicalId\":44176,\"journal\":{\"name\":\"Algebra & Discrete Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12958/adm1494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/adm1494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

阿贝尔群的子集D是可分解的,如果∅≠D⊂D+D。本文给出了一个开放问题的部分答案,该问题询问阿贝尔群的每个有限可分解子集D是否包含∑Z=0的非空子集Z⊂D。对于每个n∈n,我们在2n−1阶循环群中给出了基数|D|=n的可分解子集D,使得∑D=0,但对于任何适当的非空子集T⊂D,∑T≠0。另一方面,我们证明了基数|D|≤7的每个可分解子集D⊂R包含基数|Z|≤12|D|的非空子集T \8834D,∑Z=0。对于每个n∈n,我们给出了基数|D|=2n的子集D⊂Z,使得∑Z=0对于基数|Z|=n的某个子集Z \8834D,并且∑T≠0对于基数|T|本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Zero-sum subsets of decomposable sets in Abelian groups
A subset D of an abelian group is decomposable if ∅≠D⊂D+D. In the paper we give partial answers to an open problem asking whether every finite decomposable subset D of an abelian group contains a non-empty subset Z⊂D with ∑Z=0. For every n∈N we present a decomposable subset D of cardinality |D|=n in the cyclic group of order 2n−1 such that ∑D=0, but ∑T≠0 for any proper non-empty subset T⊂D. On the other hand, we prove that every decomposable subset D⊂R of cardinality |D|≤7 contains a non-empty subset T⊂D of cardinality |Z|≤12|D| with ∑Z=0. For every n∈N we present a subset D⊂Z of cardinality |D|=2n such that ∑Z=0 for some subset Z⊂D of cardinality |Z|=n and ∑T≠0 for any non-empty subset T⊂D of cardinality |T|
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra & Discrete Mathematics
Algebra & Discrete Mathematics MATHEMATICS, APPLIED-
CiteScore
0.50
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信