折现收敛永续的极限定理2

IF 1.3 3区 数学 Q2 STATISTICS & PROBABILITY
A. Iksanov, A. Marynych, A. Nikitin
{"title":"折现收敛永续的极限定理2","authors":"A. Iksanov, A. Marynych, A. Nikitin","doi":"10.1214/23-ejp907","DOIUrl":null,"url":null,"abstract":"Let ( ξ 1 , η 1 ), ( ξ 2 , η 2 ) , . . . be independent identically distributed R 2 -valued random vectors. Assuming that ξ 1 has zero mean and finite variance and imposing three distinct groups of assumptions on the distribution of η 1 we prove three functional limit theorems for the logarithm of convergent discounted perpetuities P k ≥ 0 e ξ 1 + ... + ξ k − ak η k +1 as a → 0+. Also, we prove a law of the iterated logarithm which corresponds to one of the aforementioned functional limit theorems. The present paper continues a line of research initiated in the paper Iksanov, Nikitin and Samoillenko (2022), which focused on limit theorems for a different type of convergent discounted perpetuities.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limit theorems for discounted convergent perpetuities II\",\"authors\":\"A. Iksanov, A. Marynych, A. Nikitin\",\"doi\":\"10.1214/23-ejp907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let ( ξ 1 , η 1 ), ( ξ 2 , η 2 ) , . . . be independent identically distributed R 2 -valued random vectors. Assuming that ξ 1 has zero mean and finite variance and imposing three distinct groups of assumptions on the distribution of η 1 we prove three functional limit theorems for the logarithm of convergent discounted perpetuities P k ≥ 0 e ξ 1 + ... + ξ k − ak η k +1 as a → 0+. Also, we prove a law of the iterated logarithm which corresponds to one of the aforementioned functional limit theorems. The present paper continues a line of research initiated in the paper Iksanov, Nikitin and Samoillenko (2022), which focused on limit theorems for a different type of convergent discounted perpetuities.\",\"PeriodicalId\":50538,\"journal\":{\"name\":\"Electronic Journal of Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejp907\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ejp907","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

设(ξ 1, η 1), (ξ 2, η 2),…是独立的同分布r2值随机向量。假设ξ 1均值为零,方差有限,并对η 1的分布施加三组不同的假设,证明了收敛折现永续的对数P k≥0 e ξ 1 +…+ ξ k−ak η k +1为a→0+。此外,我们还证明了一个迭代对数定律,它对应于上述的一个泛函极限定理。本论文延续了论文Iksanov, Nikitin和Samoillenko(2022)中发起的一系列研究,该研究侧重于不同类型收敛贴现永续的极限定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limit theorems for discounted convergent perpetuities II
Let ( ξ 1 , η 1 ), ( ξ 2 , η 2 ) , . . . be independent identically distributed R 2 -valued random vectors. Assuming that ξ 1 has zero mean and finite variance and imposing three distinct groups of assumptions on the distribution of η 1 we prove three functional limit theorems for the logarithm of convergent discounted perpetuities P k ≥ 0 e ξ 1 + ... + ξ k − ak η k +1 as a → 0+. Also, we prove a law of the iterated logarithm which corresponds to one of the aforementioned functional limit theorems. The present paper continues a line of research initiated in the paper Iksanov, Nikitin and Samoillenko (2022), which focused on limit theorems for a different type of convergent discounted perpetuities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信