{"title":"解析三角多项式的希尔伯特零矩阵","authors":"Jie Xiao , Cheng Yuan","doi":"10.1016/j.exmath.2022.09.005","DOIUrl":null,"url":null,"abstract":"<div><p><span>This paper proves such a new Hilbert’s Nullstellensatz for analytic trigonometric polynomials that if </span><span><math><msubsup><mrow><mrow><mo>{</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></msubsup></math></span> are analytic trigonometric polynomials without common zero in the finite complex plane <span><math><mi>ℂ</mi></math></span> then there are analytic trigonometric polynomials <span><math><msubsup><mrow><mrow><mo>{</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></msubsup></math></span> obeying <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></msubsup><msub><mrow><mi>f</mi></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>g</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>=</mo><mn>1</mn></mrow></math></span> in <span><math><mi>ℂ</mi></math></span>, thereby not only strengthening Helmer’s Principal Ideal Theorem for entire functions, but also finding an intrinsic path from Hilbert’s Nullstellensatz for analytic polynomials to Pythagoras’ Identity on <span><math><mi>ℂ</mi></math></span>.</p></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"40 4","pages":"Pages 910-919"},"PeriodicalIF":0.8000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hilbert’s Nullstellensatz for analytic trigonometric polynomials\",\"authors\":\"Jie Xiao , Cheng Yuan\",\"doi\":\"10.1016/j.exmath.2022.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>This paper proves such a new Hilbert’s Nullstellensatz for analytic trigonometric polynomials that if </span><span><math><msubsup><mrow><mrow><mo>{</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></msubsup></math></span> are analytic trigonometric polynomials without common zero in the finite complex plane <span><math><mi>ℂ</mi></math></span> then there are analytic trigonometric polynomials <span><math><msubsup><mrow><mrow><mo>{</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></msubsup></math></span> obeying <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></msubsup><msub><mrow><mi>f</mi></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>g</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>=</mo><mn>1</mn></mrow></math></span> in <span><math><mi>ℂ</mi></math></span>, thereby not only strengthening Helmer’s Principal Ideal Theorem for entire functions, but also finding an intrinsic path from Hilbert’s Nullstellensatz for analytic polynomials to Pythagoras’ Identity on <span><math><mi>ℂ</mi></math></span>.</p></div>\",\"PeriodicalId\":50458,\"journal\":{\"name\":\"Expositiones Mathematicae\",\"volume\":\"40 4\",\"pages\":\"Pages 910-919\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expositiones Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0723086922000585\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086922000585","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Hilbert’s Nullstellensatz for analytic trigonometric polynomials
This paper proves such a new Hilbert’s Nullstellensatz for analytic trigonometric polynomials that if are analytic trigonometric polynomials without common zero in the finite complex plane then there are analytic trigonometric polynomials obeying in , thereby not only strengthening Helmer’s Principal Ideal Theorem for entire functions, but also finding an intrinsic path from Hilbert’s Nullstellensatz for analytic polynomials to Pythagoras’ Identity on .
期刊介绍:
Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.