{"title":"伽利略空间中T-Slant、N-Slant和B-Slant螺旋的研究","authors":"E. Nešović, U. Öztürk, E. Öztürk","doi":"10.1080/1726037X.2018.1436271","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we define T-slant, N-slant and B-slant helices in Galilean space 𝔾3. In particular, we obtain the explicit parameter equations of the T-slant helices and prove that an admissible curve is a T-slant helix with a non-isotropic axis if and only if it has a non-zero constant conical curvature. We also prove that there are no N-slant, B-slant and Darboux helices in the same space.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"16 1","pages":"187 - 199"},"PeriodicalIF":0.4000,"publicationDate":"2018-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2018.1436271","citationCount":"0","resultStr":"{\"title\":\"On T-Slant, N-Slant and B-Slant helices in galilean space 𝔾3\",\"authors\":\"E. Nešović, U. Öztürk, E. Öztürk\",\"doi\":\"10.1080/1726037X.2018.1436271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we define T-slant, N-slant and B-slant helices in Galilean space 𝔾3. In particular, we obtain the explicit parameter equations of the T-slant helices and prove that an admissible curve is a T-slant helix with a non-isotropic axis if and only if it has a non-zero constant conical curvature. We also prove that there are no N-slant, B-slant and Darboux helices in the same space.\",\"PeriodicalId\":42788,\"journal\":{\"name\":\"Journal of Dynamical Systems and Geometric Theories\",\"volume\":\"16 1\",\"pages\":\"187 - 199\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1726037X.2018.1436271\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamical Systems and Geometric Theories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1726037X.2018.1436271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2018.1436271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
On T-Slant, N-Slant and B-Slant helices in galilean space 𝔾3
Abstract In this paper, we define T-slant, N-slant and B-slant helices in Galilean space 𝔾3. In particular, we obtain the explicit parameter equations of the T-slant helices and prove that an admissible curve is a T-slant helix with a non-isotropic axis if and only if it has a non-zero constant conical curvature. We also prove that there are no N-slant, B-slant and Darboux helices in the same space.