了解人类选择接种疫苗或减少与蚊子接触对登革热传播动力学影响的博弈动态建模框架

Q2 Mathematics
M. Z. Ndii
{"title":"了解人类选择接种疫苗或减少与蚊子接触对登革热传播动力学影响的博弈动态建模框架","authors":"M. Z. Ndii","doi":"10.5614/cbms.2021.4.1.6","DOIUrl":null,"url":null,"abstract":"Strategies for reducing dengue incidence are by minimizing the contact between mosquitoes and human or the use of vaccine. However, the candidate of dengue is not perfect and potentially results in more secondary infection cases.This leads to the question which strategy should be decided by individuals to reduce the chance for being infected by dengue. A game-dynamic modeling framework by coupling epidemic and behavior model has been constructed to study the effects of human decision making behavior on dengue transmission dynamics. We also consider strategies as time-dependent controls and estimate the parameter values against data of dengue incidence in Kupang city, Indonesia. Parameter estimation gives the reproduction number of 1.17 which indicates the possibility of outbreak occurrence. When the efficacy of reduced contact with mosquitoes is low, the use of vaccination is the best option to reduce dengue incidence. The efficacy of reduced contact with mosquitoes should be at high level to get higher reduction in dengue incidence if no vaccine is available yet. An optimal control approach suggests that a higher level of vaccination rate and the reduced contact with mosquitoes is required to reach optimal reduction in dengue incidence. However, solutions from epidemiological-behavior model showed that individuals are likely to choose one strategy only which has higher cost and the probability of perceived efficacy. The implementation of vaccination helps in reducing dengue incidence. However, understanding the effects of dengue vaccine on secondary infections is required before the delivery of such intervention.","PeriodicalId":33129,"journal":{"name":"Communication in Biomathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Game Dynamic Modeling Framework to Understand the Influence of Human Choice to Vaccinate or to Reduce Contact with Mosquitoes on Dengue Transmission Dynamics\",\"authors\":\"M. Z. Ndii\",\"doi\":\"10.5614/cbms.2021.4.1.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Strategies for reducing dengue incidence are by minimizing the contact between mosquitoes and human or the use of vaccine. However, the candidate of dengue is not perfect and potentially results in more secondary infection cases.This leads to the question which strategy should be decided by individuals to reduce the chance for being infected by dengue. A game-dynamic modeling framework by coupling epidemic and behavior model has been constructed to study the effects of human decision making behavior on dengue transmission dynamics. We also consider strategies as time-dependent controls and estimate the parameter values against data of dengue incidence in Kupang city, Indonesia. Parameter estimation gives the reproduction number of 1.17 which indicates the possibility of outbreak occurrence. When the efficacy of reduced contact with mosquitoes is low, the use of vaccination is the best option to reduce dengue incidence. The efficacy of reduced contact with mosquitoes should be at high level to get higher reduction in dengue incidence if no vaccine is available yet. An optimal control approach suggests that a higher level of vaccination rate and the reduced contact with mosquitoes is required to reach optimal reduction in dengue incidence. However, solutions from epidemiological-behavior model showed that individuals are likely to choose one strategy only which has higher cost and the probability of perceived efficacy. The implementation of vaccination helps in reducing dengue incidence. However, understanding the effects of dengue vaccine on secondary infections is required before the delivery of such intervention.\",\"PeriodicalId\":33129,\"journal\":{\"name\":\"Communication in Biomathematical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communication in Biomathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/cbms.2021.4.1.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communication in Biomathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/cbms.2021.4.1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

减少登革热发病率的策略是尽量减少蚊子与人的接触或使用疫苗。然而,登革热的候选病例并不完美,可能会导致更多的继发感染病例。这就引出了一个问题,即个人应该决定哪种策略来减少感染登革热的机会。通过流行病与行为模型的耦合,构建了一个博弈动力学建模框架,研究了人类决策行为对登革热传播动力学的影响。我们还将策略视为与时间相关的控制,并根据印度尼西亚库邦市登革热发病率的数据估计参数值。参数估计的繁殖数为1.17,表明爆发的可能性。当减少与蚊子接触的效果较低时,接种疫苗是减少登革热发病率的最佳选择。如果还没有疫苗,减少与蚊子接触的效果应该很高,才能更高程度地降低登革热的发病率。最佳控制方法表明,需要更高水平的疫苗接种率和减少与蚊子的接触,才能实现登革热发病率的最佳降低。然而,流行病学行为模型的解决方案表明,个体可能只选择一种成本和感知疗效概率较高的策略。接种疫苗有助于降低登革热的发病率。然而,在进行此类干预之前,需要了解登革热疫苗对继发感染的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Game Dynamic Modeling Framework to Understand the Influence of Human Choice to Vaccinate or to Reduce Contact with Mosquitoes on Dengue Transmission Dynamics
Strategies for reducing dengue incidence are by minimizing the contact between mosquitoes and human or the use of vaccine. However, the candidate of dengue is not perfect and potentially results in more secondary infection cases.This leads to the question which strategy should be decided by individuals to reduce the chance for being infected by dengue. A game-dynamic modeling framework by coupling epidemic and behavior model has been constructed to study the effects of human decision making behavior on dengue transmission dynamics. We also consider strategies as time-dependent controls and estimate the parameter values against data of dengue incidence in Kupang city, Indonesia. Parameter estimation gives the reproduction number of 1.17 which indicates the possibility of outbreak occurrence. When the efficacy of reduced contact with mosquitoes is low, the use of vaccination is the best option to reduce dengue incidence. The efficacy of reduced contact with mosquitoes should be at high level to get higher reduction in dengue incidence if no vaccine is available yet. An optimal control approach suggests that a higher level of vaccination rate and the reduced contact with mosquitoes is required to reach optimal reduction in dengue incidence. However, solutions from epidemiological-behavior model showed that individuals are likely to choose one strategy only which has higher cost and the probability of perceived efficacy. The implementation of vaccination helps in reducing dengue incidence. However, understanding the effects of dengue vaccine on secondary infections is required before the delivery of such intervention.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communication in Biomathematical Sciences
Communication in Biomathematical Sciences Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
3.60
自引率
0.00%
发文量
7
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信