使用地理加权回归对特定和源解析PM2.5化学迁移模型模拟的偏差校正

Carlos Hernandez, K. Skyllakou, Pablo Garcia Rivera, Brian T. Dinkelacker, J. Marshall, A. Pope, Allen Robinson, S. Pandis, P. Adams
{"title":"使用地理加权回归对特定和源解析PM2.5化学迁移模型模拟的偏差校正","authors":"Carlos Hernandez, K. Skyllakou, Pablo Garcia Rivera, Brian T. Dinkelacker, J. Marshall, A. Pope, Allen Robinson, S. Pandis, P. Adams","doi":"10.33774/CHEMRXIV-2021-H71P5","DOIUrl":null,"url":null,"abstract":"The ability to provide speciated and source-resolved PM2.5 estimates make chemical transport models a potentially valuable tool for exposure assessments. However, epidemiological studies often require unbiased estimates, which can be challenging for chemical transport models. We use geographically weighted regression to predict and correct the bias in source-resolved PM2.5 species (elemental carbon, organic aerosol, ammonium, nitrate, and sulfate) across the continental U.S. for 2001 and 2010. The regression models are trained using speciated ground-level monitors from the CSN and IMPROVE networks. A 10-fold cross-validation shows minimal bias across all simulated PM2.5 species (0 – 3%) and improved agreement with ground-level monitors (R2 = 0.53 – 0.97). Corrections also improve the agreement between simulated and observed species mixtures on a fractional basis. The source-resolved exposure estimates developed in this study are suitable for use in health analyses of PM2.5 toxicity.","PeriodicalId":72565,"journal":{"name":"ChemRxiv : the preprint server for chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bias corrections for speciated and source-resolved PM2.5 chemical transport model simulations using a geographically weighted regression\",\"authors\":\"Carlos Hernandez, K. Skyllakou, Pablo Garcia Rivera, Brian T. Dinkelacker, J. Marshall, A. Pope, Allen Robinson, S. Pandis, P. Adams\",\"doi\":\"10.33774/CHEMRXIV-2021-H71P5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to provide speciated and source-resolved PM2.5 estimates make chemical transport models a potentially valuable tool for exposure assessments. However, epidemiological studies often require unbiased estimates, which can be challenging for chemical transport models. We use geographically weighted regression to predict and correct the bias in source-resolved PM2.5 species (elemental carbon, organic aerosol, ammonium, nitrate, and sulfate) across the continental U.S. for 2001 and 2010. The regression models are trained using speciated ground-level monitors from the CSN and IMPROVE networks. A 10-fold cross-validation shows minimal bias across all simulated PM2.5 species (0 – 3%) and improved agreement with ground-level monitors (R2 = 0.53 – 0.97). Corrections also improve the agreement between simulated and observed species mixtures on a fractional basis. The source-resolved exposure estimates developed in this study are suitable for use in health analyses of PM2.5 toxicity.\",\"PeriodicalId\":72565,\"journal\":{\"name\":\"ChemRxiv : the preprint server for chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemRxiv : the preprint server for chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33774/CHEMRXIV-2021-H71P5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv : the preprint server for chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33774/CHEMRXIV-2021-H71P5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提供特定和源解析PM2.5估计的能力使化学迁移模型成为暴露评估的潜在有价值的工具。然而,流行病学研究通常需要无偏的估计,这对化学运输模型来说可能是一个挑战。我们使用地理加权回归来预测和纠正2001年和2010年美国大陆PM2.5来源解析物种(元素碳、有机气溶胶、铵、硝酸盐和硫酸盐)的偏差。回归模型使用来自CSN和PROVEE网络的特定地面监测器进行训练。10倍交叉验证显示,所有模拟PM2.5物种的偏差最小(0-3%),与地面监测器的一致性提高(R2=0.53–0.97)。修正也在分数基础上提高了模拟和观测物种混合物之间的一致性。本研究中开发的源解析暴露估计值适用于PM2.5毒性的健康分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bias corrections for speciated and source-resolved PM2.5 chemical transport model simulations using a geographically weighted regression
The ability to provide speciated and source-resolved PM2.5 estimates make chemical transport models a potentially valuable tool for exposure assessments. However, epidemiological studies often require unbiased estimates, which can be challenging for chemical transport models. We use geographically weighted regression to predict and correct the bias in source-resolved PM2.5 species (elemental carbon, organic aerosol, ammonium, nitrate, and sulfate) across the continental U.S. for 2001 and 2010. The regression models are trained using speciated ground-level monitors from the CSN and IMPROVE networks. A 10-fold cross-validation shows minimal bias across all simulated PM2.5 species (0 – 3%) and improved agreement with ground-level monitors (R2 = 0.53 – 0.97). Corrections also improve the agreement between simulated and observed species mixtures on a fractional basis. The source-resolved exposure estimates developed in this study are suitable for use in health analyses of PM2.5 toxicity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信