由三阶微分方程确定的多个正交埃尔米特多项式\(H_{n_1,n_2}(z,\alpha)\)的渐近性

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
S. Yu. Dobrokhotov, A. V. Tsvetkova
{"title":"由三阶微分方程确定的多个正交埃尔米特多项式\\(H_{n_1,n_2}(z,\\alpha)\\)的渐近性","authors":"S. Yu. Dobrokhotov,&nbsp;A. V. Tsvetkova","doi":"10.1134/S106192082104004X","DOIUrl":null,"url":null,"abstract":"<p> In the paper, we study the asymptotics of multiple orthogonal Hermite polynomials <span>\\(H_{n_1,n_2}(z,\\alpha)\\)</span> that are determined by orthogonality relations with respect to two weights that are Gaussian exponents with shifted maxima. These polynomials can be defined using recurrence relations, and also, as shown by A. I. Aptekarev, A. Branquinho, and W. Van Assche, as certain solutions to a third-order differential equation. Starting from this differential equation, we obtain asymptotics of such polynomials as <span>\\(|n|=\\sqrt{n_1^2+n_2^2} \\rightarrow \\infty\\)</span> in the form of the Airy function <span>\\({\\rm Ai}\\)</span> and its derivative <span>\\({\\rm Ai}'\\)</span> of a compound argument. </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"28 4","pages":"439 - 454"},"PeriodicalIF":1.7000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics of Multiple Orthogonal Hermite Polynomials \\\\(H_{n_1,n_2}(z,\\\\alpha)\\\\) Determined by a Third-Order Differential Equation\",\"authors\":\"S. Yu. Dobrokhotov,&nbsp;A. V. Tsvetkova\",\"doi\":\"10.1134/S106192082104004X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> In the paper, we study the asymptotics of multiple orthogonal Hermite polynomials <span>\\\\(H_{n_1,n_2}(z,\\\\alpha)\\\\)</span> that are determined by orthogonality relations with respect to two weights that are Gaussian exponents with shifted maxima. These polynomials can be defined using recurrence relations, and also, as shown by A. I. Aptekarev, A. Branquinho, and W. Van Assche, as certain solutions to a third-order differential equation. Starting from this differential equation, we obtain asymptotics of such polynomials as <span>\\\\(|n|=\\\\sqrt{n_1^2+n_2^2} \\\\rightarrow \\\\infty\\\\)</span> in the form of the Airy function <span>\\\\({\\\\rm Ai}\\\\)</span> and its derivative <span>\\\\({\\\\rm Ai}'\\\\)</span> of a compound argument. </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"28 4\",\"pages\":\"439 - 454\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S106192082104004X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S106192082104004X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了多重正交Hermite多项式\(H_{n_1,n_2}(z,\alpha)\)的渐近性,这些多项式是由两个权值为高斯指数的移最大值的正交关系决定的。这些多项式可以用递归关系来定义,而且,如a . I. Aptekarev, a . Branquinho和W. Van Assche所示,可以作为三阶微分方程的某些解来定义。从这个微分方程出发,我们得到了复合参数的Airy函数\({\rm Ai}\)及其导数\({\rm Ai}'\)形式的多项式\(|n|=\sqrt{n_1^2+n_2^2} \rightarrow \infty\)的渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotics of Multiple Orthogonal Hermite Polynomials \(H_{n_1,n_2}(z,\alpha)\) Determined by a Third-Order Differential Equation

In the paper, we study the asymptotics of multiple orthogonal Hermite polynomials \(H_{n_1,n_2}(z,\alpha)\) that are determined by orthogonality relations with respect to two weights that are Gaussian exponents with shifted maxima. These polynomials can be defined using recurrence relations, and also, as shown by A. I. Aptekarev, A. Branquinho, and W. Van Assche, as certain solutions to a third-order differential equation. Starting from this differential equation, we obtain asymptotics of such polynomials as \(|n|=\sqrt{n_1^2+n_2^2} \rightarrow \infty\) in the form of the Airy function \({\rm Ai}\) and its derivative \({\rm Ai}'\) of a compound argument.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信