Alexewicz范数中的傅立叶变换反演

E. Talvila
{"title":"Alexewicz范数中的傅立叶变换反演","authors":"E. Talvila","doi":"10.7153/jca-2022-19-07","DOIUrl":null,"url":null,"abstract":"Abstract. If f P LpRq it is proved that limSÑ8‖f ́ f ̊ DS‖ “ 0, where DSpxq “ sinpSxq{pπxq is the Dirichlet kernel and ‖f‖ “ supαăβ | şβ α fpxq dx| is the Alexiewicz norm. This gives a symmetric inversion of the Fourier transform on the real line. An asymmetric inversion is also proved. The results also hold for a measure given by dF where F is a continuous function of bounded variation. Such measures need not be absolutely continuous with respect to Lebesgue measure. An example shows there is f P LpRq such that limSÑ8‖f ́ f ̊ DS‖1‰ 0.","PeriodicalId":73656,"journal":{"name":"Journal of classical analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fourier transform inversion in the Alexiewicz norm\",\"authors\":\"E. Talvila\",\"doi\":\"10.7153/jca-2022-19-07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. If f P LpRq it is proved that limSÑ8‖f ́ f ̊ DS‖ “ 0, where DSpxq “ sinpSxq{pπxq is the Dirichlet kernel and ‖f‖ “ supαăβ | şβ α fpxq dx| is the Alexiewicz norm. This gives a symmetric inversion of the Fourier transform on the real line. An asymmetric inversion is also proved. The results also hold for a measure given by dF where F is a continuous function of bounded variation. Such measures need not be absolutely continuous with respect to Lebesgue measure. An example shows there is f P LpRq such that limSÑ8‖f ́ f ̊ DS‖1‰ 0.\",\"PeriodicalId\":73656,\"journal\":{\"name\":\"Journal of classical analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of classical analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/jca-2022-19-07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of classical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/jca-2022-19-07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要如果f P LpRq,则证明了limSñ8‖f́fõDS‖“0,其中DSpxq”sinpSxq{Pπxq是Dirichlet核“supαăβ|şβαfpxq dx |是Alexewicz范数。这给出了实线上傅立叶变换的对称反演。还证明了非对称反演。结果也适用于dF给出的测度,其中F是有界变差的连续函数。这样的测度不必相对于Lebesgue测度是绝对连续的。一个例子表明其极限为Sñ8½f́f́DS½1‰0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fourier transform inversion in the Alexiewicz norm
Abstract. If f P LpRq it is proved that limSÑ8‖f ́ f ̊ DS‖ “ 0, where DSpxq “ sinpSxq{pπxq is the Dirichlet kernel and ‖f‖ “ supαăβ | şβ α fpxq dx| is the Alexiewicz norm. This gives a symmetric inversion of the Fourier transform on the real line. An asymmetric inversion is also proved. The results also hold for a measure given by dF where F is a continuous function of bounded variation. Such measures need not be absolutely continuous with respect to Lebesgue measure. An example shows there is f P LpRq such that limSÑ8‖f ́ f ̊ DS‖1‰ 0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信