Radu V. Craiu, Paul Gustafson, Jeffrey S. Rosenthal
{"title":"关于贝叶斯推理和马尔可夫链蒙特卡罗的思考","authors":"Radu V. Craiu, Paul Gustafson, Jeffrey S. Rosenthal","doi":"10.1002/cjs.11707","DOIUrl":null,"url":null,"abstract":"<p>Bayesian inference and Markov chain Monte Carlo methods are vigorous areas of statistical research. Here we reflect on some recent developments and future directions in these fields.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":"50 4","pages":"1213-1227"},"PeriodicalIF":0.8000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11707","citationCount":"2","resultStr":"{\"title\":\"Reflections on Bayesian inference and Markov chain Monte Carlo\",\"authors\":\"Radu V. Craiu, Paul Gustafson, Jeffrey S. Rosenthal\",\"doi\":\"10.1002/cjs.11707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bayesian inference and Markov chain Monte Carlo methods are vigorous areas of statistical research. Here we reflect on some recent developments and future directions in these fields.</p>\",\"PeriodicalId\":55281,\"journal\":{\"name\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"volume\":\"50 4\",\"pages\":\"1213-1227\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11707\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11707\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11707","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Reflections on Bayesian inference and Markov chain Monte Carlo
Bayesian inference and Markov chain Monte Carlo methods are vigorous areas of statistical research. Here we reflect on some recent developments and future directions in these fields.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.