{"title":"偏集上的单调和保锥映射","authors":"I. Chajda, H. Langer","doi":"10.21136/mb.2022.0026-21","DOIUrl":null,"url":null,"abstract":". We define several sorts of mappings on a poset like monotone, strictly monotone, upper cone preserving and variants of these. Our aim is to study in which posets some of these mappings coincide. We define special mappings determined by two elements and investigate when these are strictly monotone or upper cone preserving. If the considered poset is a semilattice then its monotone mappings coincide with semilattice homomorphisms if and only if the poset is a chain. Similarly, we study posets which need not be semilattices but whose upper cones have a minimal element. We extend this investigation to posets that are direct products of chains or an ordinal sum of an antichain and a finite chain. We characterize equivalence relations induced by strongly monotone mappings and show that the quotient set of a poset by such an equivalence relation is a poset again.","PeriodicalId":45392,"journal":{"name":"Mathematica Bohemica","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Monotone and cone preserving mappings on posets\",\"authors\":\"I. Chajda, H. Langer\",\"doi\":\"10.21136/mb.2022.0026-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We define several sorts of mappings on a poset like monotone, strictly monotone, upper cone preserving and variants of these. Our aim is to study in which posets some of these mappings coincide. We define special mappings determined by two elements and investigate when these are strictly monotone or upper cone preserving. If the considered poset is a semilattice then its monotone mappings coincide with semilattice homomorphisms if and only if the poset is a chain. Similarly, we study posets which need not be semilattices but whose upper cones have a minimal element. We extend this investigation to posets that are direct products of chains or an ordinal sum of an antichain and a finite chain. We characterize equivalence relations induced by strongly monotone mappings and show that the quotient set of a poset by such an equivalence relation is a poset again.\",\"PeriodicalId\":45392,\"journal\":{\"name\":\"Mathematica Bohemica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Bohemica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21136/mb.2022.0026-21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Bohemica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21136/mb.2022.0026-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
. We define several sorts of mappings on a poset like monotone, strictly monotone, upper cone preserving and variants of these. Our aim is to study in which posets some of these mappings coincide. We define special mappings determined by two elements and investigate when these are strictly monotone or upper cone preserving. If the considered poset is a semilattice then its monotone mappings coincide with semilattice homomorphisms if and only if the poset is a chain. Similarly, we study posets which need not be semilattices but whose upper cones have a minimal element. We extend this investigation to posets that are direct products of chains or an ordinal sum of an antichain and a finite chain. We characterize equivalence relations induced by strongly monotone mappings and show that the quotient set of a poset by such an equivalence relation is a poset again.