{"title":"多孔介质中单相流动椭圆型偏微分方程问题的神经解法","authors":"Vilius Dzidolikas, Vytautas Kraujalis, M. Pal","doi":"10.21595/mme.2023.23301","DOIUrl":null,"url":null,"abstract":"Partial differential equations are used to model fluid flow in porous media. Neural networks can act as equation solution approximators by basing their forecasts on training samples of permeability maps and their corresponding two-point flux approximation solutions. This paper illustrates how convolutional neural networks of various architecture, depth and parameter configurations manage to forecast solutions of the Darcy’s flow equation for various domain sizes.","PeriodicalId":32958,"journal":{"name":"Mathematical Models in Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural solution of elliptic partial differential equation problem for single phase flow in porous media\",\"authors\":\"Vilius Dzidolikas, Vytautas Kraujalis, M. Pal\",\"doi\":\"10.21595/mme.2023.23301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partial differential equations are used to model fluid flow in porous media. Neural networks can act as equation solution approximators by basing their forecasts on training samples of permeability maps and their corresponding two-point flux approximation solutions. This paper illustrates how convolutional neural networks of various architecture, depth and parameter configurations manage to forecast solutions of the Darcy’s flow equation for various domain sizes.\",\"PeriodicalId\":32958,\"journal\":{\"name\":\"Mathematical Models in Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Models in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21595/mme.2023.23301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/mme.2023.23301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Neural solution of elliptic partial differential equation problem for single phase flow in porous media
Partial differential equations are used to model fluid flow in porous media. Neural networks can act as equation solution approximators by basing their forecasts on training samples of permeability maps and their corresponding two-point flux approximation solutions. This paper illustrates how convolutional neural networks of various architecture, depth and parameter configurations manage to forecast solutions of the Darcy’s flow equation for various domain sizes.